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1 Overview

This document is divided into three sections. Section 2 adds some clarifications
regarding filtering grayscale images from the dataset, along with additional de-
tails about the network architecture. Section 3 contains a discussion of our al-
gorithm in comparison to Cheng et al. [1]. Section 4 contains a more detailed
explanation of the VGG category analysis presented in Section 4.1 and Figure 8
of the paper, along with an additional analysis on common category confusions
after recolorization.

2 Clarifications

3 Comparison to Cheng et al. [1]

3.1 Network architecture

Figure 3 in the paper showed a diagram of our network architecture. Table
1 in this document thoroughly lists the layers used in our architecture during
training time. During testing, the temperature adjustment, softmax, and bilinear
upsampling are all implemented as subsequent layers in a feed-forward network.
Note the column showing the effective dilation. The effective dilation is the
spacing at which consecutive elements of the convolutional kernel are evaluated,
relative to the input pixels, and is computed by the product of the accumulated
stride and the layer dilation. Through each convolutional block from conv1 to
conv5, the effective dilation of the convolutional kernel is increased. From conv6

to conv8, the effective dilation is decreased.

3.2 Filtering Grayscale Images

Some of the images in the Imagenet [2] dataset are in grayscale and were fil-
tered out of training, validation, and testing sets. An image was considered to
be grayscale if no pixel had a value of ab above 5 and was withheld from train-
ing and testing. The threshold was set to be conservative. A more aggressive
threshold would remove more grayscale images at the expense of color images
that happened to contain a very desaturated palette.
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Our Network Architecture

X C S D Sa De BN L

data 224 3 - - - - - -

conv1 1 224 64 1 1 1 1 - -
conv1 2 112 64 2 1 1 1 X -

conv2 1 112 128 1 1 2 2 - -
conv2 1 56 128 2 1 2 2 X -

conv3 1 56 256 1 1 4 4 - -
conv3 2 56 256 1 1 4 4 - -
conv3 3 28 256 2 1 4 4 X -

conv4 1 28 512 1 1 8 8 - -
conv4 2 28 512 1 1 8 8 - -
conv4 3 28 512 1 1 8 8 X -

conv5 1 28 512 1 2 8 16 - -
conv5 2 28 512 1 2 8 16 - -
conv5 3 28 512 1 2 8 16 X X
conv6 1 28 512 1 2 8 16 - -
conv6 2 28 512 1 2 8 16 - -
conv6 3 28 512 1 2 8 16 X X
conv7 1 28 256 1 1 8 8 - -
conv7 2 28 256 1 1 8 8 - -
conv7 3 28 256 1 1 8 8 X X
conv8 1 56 128 .5 1 4 4 - -
conv8 2 56 128 1 1 4 4 - -
conv8 3 56 128 1 1 4 4 - X

Table 1. Our network architecture. X spatial resolution of output, C number of chan-
nels of output; S computation stride, values greater than 1 indicate downsampling
following convolution, values less than 1 indicate upsampling preceding convolution;
D kernel dilation; Sa accumulated stride across all preceding layers (product over all
strides in previous layers); De effective dilation of the layer with respect to the input
(layer dilation times accumulated stride); BN whether BatchNorm layer was used after
layer; L whether a 1x1 conv and cross-entropy loss layer was imposed

3.3 Training, Validation, and Testing Splits

The full 1.3M images, minus the grayscale images were used for training. The
first 2000 images in the Imagenet [2] validation set were used for validation. For
the aggregated quantitative testing results shown in Table 1 of the paper, we
used the last 10,000 images in the validation set, 9803 of that were color. For the
qualitative VGG classification results shown in Figure 8, we used the last 48,000
images in the validation set were used, 47,023 of that contained color. Since we
sorted on classification performance across 1000 categories for the VGG analysis,
we used the full validation set for testing to maximize the number of samples
per category.

Quantitative comparisons to Cheng et al. [1] are not possible, as the authors
have not released their code or test set results. We provide qualitative compar-
isons to the 23 test images in [1] on the attached website, which we obtained by
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Cheng et al. [1] Ours

(1) Extract feature sets
(a) 7x7 patch (b) DAISY

Algorithm (c) FCN on 47 categories Feed-forward CNN
(2) 3-layer NN regressor
(3) Joint-bilateral filter

Extract features. Train FCN [4] Train CNN from pixels to
Learning on pre-defined categories. color distribution. Tune single

Train 3-layer NN regressor. parameter on validation.

Dataset

2688/1344 images from 1.3M/10k images from
SUN [3] for train/test. ImageNet [2] for train/test.
Limited variety with Broad and diverse

only scenes. set of objects and scenes.

Run-time
4.9s/image on 100ms/image in Caffe

Matlab implementation on K40 GPU

Table 2. Comparison to Cheng et al. [1]

manually cropping from the paper. Our results are about the same qualitative
level as [1]. Note that Cheng et al. [1] has several advantages in this setting:
(1) the test images are from the SUN dataset [3], which we did not train on
and (2) the 23 images were hand-selected from 1344 by the authors, and is not
necessarily representative of algorithm performance. We were unable to obtain
the 1344 test set results through correspondence with the authors.

Additionally, we compare the methods on several important dimensions in
Table 2: algorithm pipeline, learning, dataset, and run-time. Our method is
faster, straightforward to train and understand, has fewer hand-tuned parame-
ters and components, and has been demonstrated on a broader and more diverse
set of test images than Cheng et al. [1].

4 VGG Evaluation

4.1 Classification Performance

In Section 4.1, we investigated the grayscale and re-colored images using the
VGG classifier [5] for the last 48,000 images in the Imagenet validation set. For
each category, we computed the top-5 classification performance on grayscale
and recolorized images, agray,arecolor ∈ [0, 1]C , where C = 1000 categories. We
sorted the categories by arecolor − agray and plotted examples of some selected
top and bottom classes in Figure 8 of the paper. The re-colored vs grayscale per-
formance per category is shown in Figure 1, with top and bottom 50 categories
highlighted. For the top example categories, the individual images are sorted by
ascending rank of the correct classification of the recolored image, with tiebreak-
ers on descending rank of the correct classification of the grayscale image. For
the bottom example categories, the images are sorted in reverse, in order to high-
light the instances when recolorization results in an errant classification relative
to the grayscale image.
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Fig. 1. Performance of VGG top-5 classification on recolorized images vs grayscale
images per category. Test was done on last 48,000 images in Imagenet validation set.

4.2 Common Confusions

To further investigate the biases in our system, we look at the common class
confusions that often occur after image recolorization but not with the original
ground truth image. We compute the rate of top-5 confusion Corig,Crecolor ∈
[0, 1]C×C , with ground truth colors and after recolorization. A value of Cc,d = 1
means that every image in category c was classified as category d in the top-5. We
find the class-confusion added after recolorization by computing A = Crecolor −
Corig, and sort the off-diagonal entries. Figure 2 shows all C×(C−1) off-diagonal
entries of Crecolor vs Corig, with the top 100 entries from A highlighted.

For each category pair (c, d), we extract the images that contained the con-
fusion after recolorization but not with the original colorization. We then sort
the images in descending order of the classification score of the confused cate-
gory. Examples for some top categories are shown in Figure 3. An image of a
“minibus” is often colored yellow, leading to a misclassification as “school bus”.
Animal classes are sometimes colored differently than ground truth, leading to
misclassification to related species. Note that the colorizations are often visually
realistic, even though they lead to a misclassification.
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Fig. 2. Top-5 confusion rates with recolorizations and original colors. Test was done
on last 48,000 images in Imagenet validation set [2].
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Fig. 3. Examples of some most-confused categories. Top rows show ground truth im-
age. Bottom rows show recolorized images. Rank of common confusion in parentheses.
Ground truth and confused categories after recolorization are labeled.
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