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PROBLEM STATEMENT Given a grayscale image, predict the color SELECTED IMAGENET RESULTS SEMANTIC INTERPRETABILITY OF RESULTS (VGG CLASSIFICATION)
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Input: Grayscale image Output: Color information Concatenate (L,ab)
L channel ab channels for plausible colorization
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Our contributions

1) Graphics Task of Colorization

a) set a new high-water mark on the task by training on 1M photos
b) design an appropriate objective function that handles the
multimodal uncertainty and captures a wide diversity

c) introduce a novel framework for testing colorization algorithms,
potentially applicable to other image synthesis tasks
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2) Colorization as Representation Learning

a) introduce colorization task as instance of cross-channel encoding
b) evaluate colorization for representation learning, demonstrate
competitive performance in self-supervision framework
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Multiple plausible colorizations may exist
=>» L2 loss is inadequate for this problem
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REPRESENTATION LEARNING VIA CROSS-CHANNEL ENCODING
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Grayscale Image to color distribution
- multinomial classification problem
- quantize ab space into grid size 10, keep 313 bins in gamut
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PER-PIXEL COLOR DISTRIBUTION TO SINGLE POINT ESTIMATE Conclusions
- Mean is spatially coherent but desaturated - Improvement in visual plausibility observed when using
_Mode is vibrant but can have artifacts multinomial classification loss rather than L2 regression
- Interpolate between mean and mode with annealed-mean - Additional improvement observed using class-rebalancing term
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