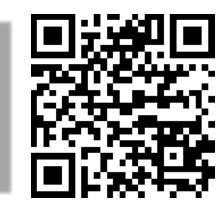


Colorful Image Colorization

Richard Zhang Phillip Isola Alexei A. Efros Department of Electrical Engineering and Computer Sciences, UC Berkeley

Additional examples, Try our model! richzhang.github.io/colorization



PROBLEM STATEMENT Given a grayscale image, predict the color

Input: Grayscale image

Output: Color information *ab* channels

```
Concatenate (L,ab)
for plausible colorization
```

Our contributions

L channel

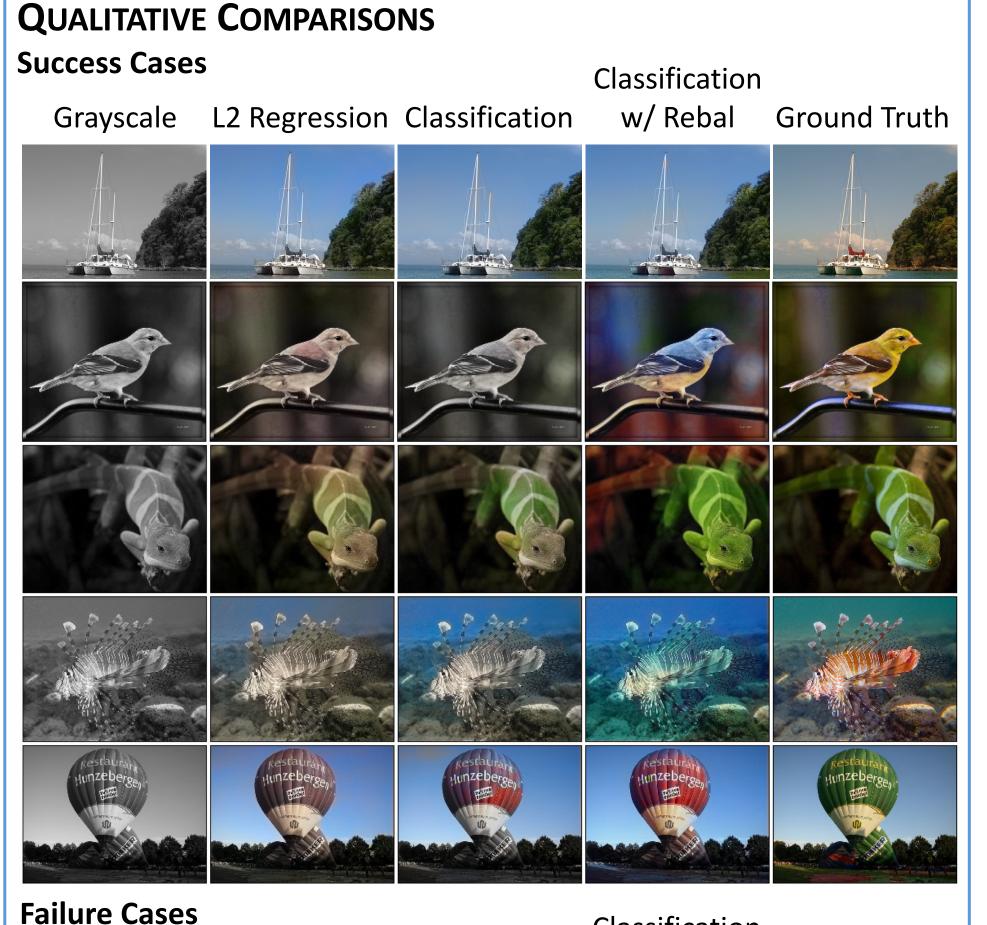
1) Graphics Task of Colorization

a) achieve state-of-the-art by training on 1M ImageNet photos b) design an appropriate objective function that handles the multimodal uncertainty and captures a wide diversity c) introduce a novel framework for testing colorization algorithms, potentially applicable to other image synthesis tasks

2) Colorization as Representation Learning

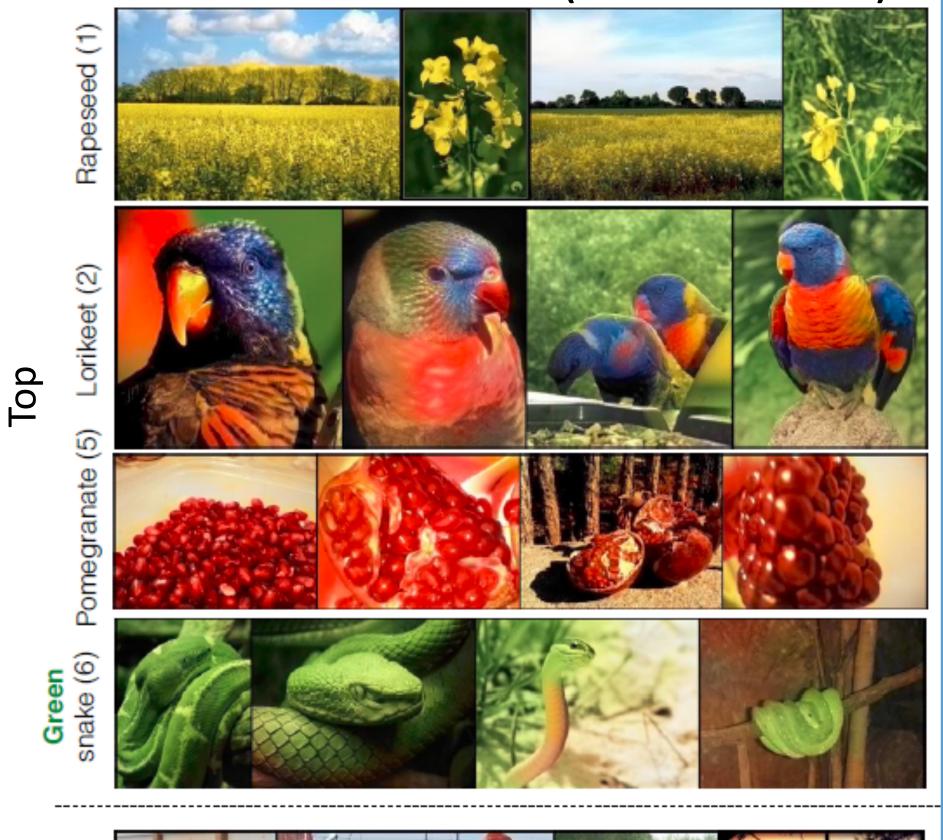
a) introduce colorization task as instance of *cross-channel encoding* b) evaluate colorization for representation learning, demonstrate competitive performance in self-supervision framework

INHERENT AMBIGUITY



Classification

SEMANTIC INTERPRETABILITY OF RESULTS (VGG CLASSIFICATION)



Multiple plausible colorizations may exist

 \rightarrow L2 loss is inadequate for this problem

OUR LOSS FUNCTION

Grayscale Image to color distribution

- *multinomial classification* problem

- quantize *ab* space into grid size 10, keep 313 bins in gamut - cross entropy loss

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} v(\mathbf{Z}_{h, w}) \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

Rarity Predicted Target weighting distribution distribution

- Class rebalancing to encourage learning of rare colors

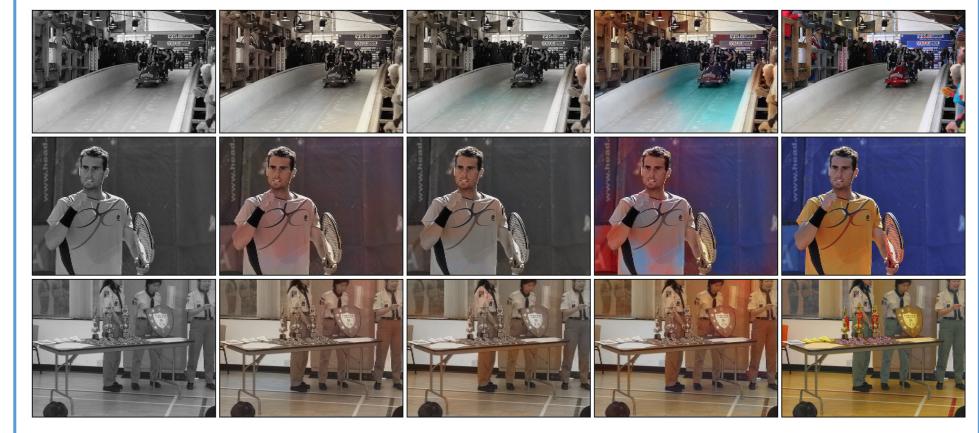
 $v(\mathbf{Z}_{h,w}) = \mathbf{w}_{q^*}, \text{ where } q^* = \arg \max \mathbf{Z}_{h,w,q}$ $\lambda -1$

$$\mathbf{w} \propto \left((1-\lambda)\widetilde{\mathbf{p}} + \frac{\pi}{Q} \right) \quad , \quad \mathbb{E}[\mathbf{w}] = \sum_{q} \widetilde{\mathbf{p}}_{q} \mathbf{w}_{q} = 1$$

reweighting empirical distribution combine with uniform

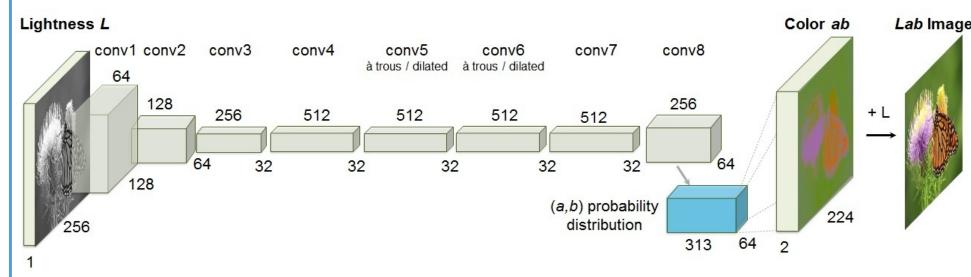
	log ₁₀ probability						
Discrete <i>ab</i> space	Histogram over <i>ab</i> space 🛛 🔪						
-110							

Grayscale L2 Regression Classification w/ Rebal Ground Truth



NETWORK ARCHITECTURE

Fully convolutional architecture, VGG-style



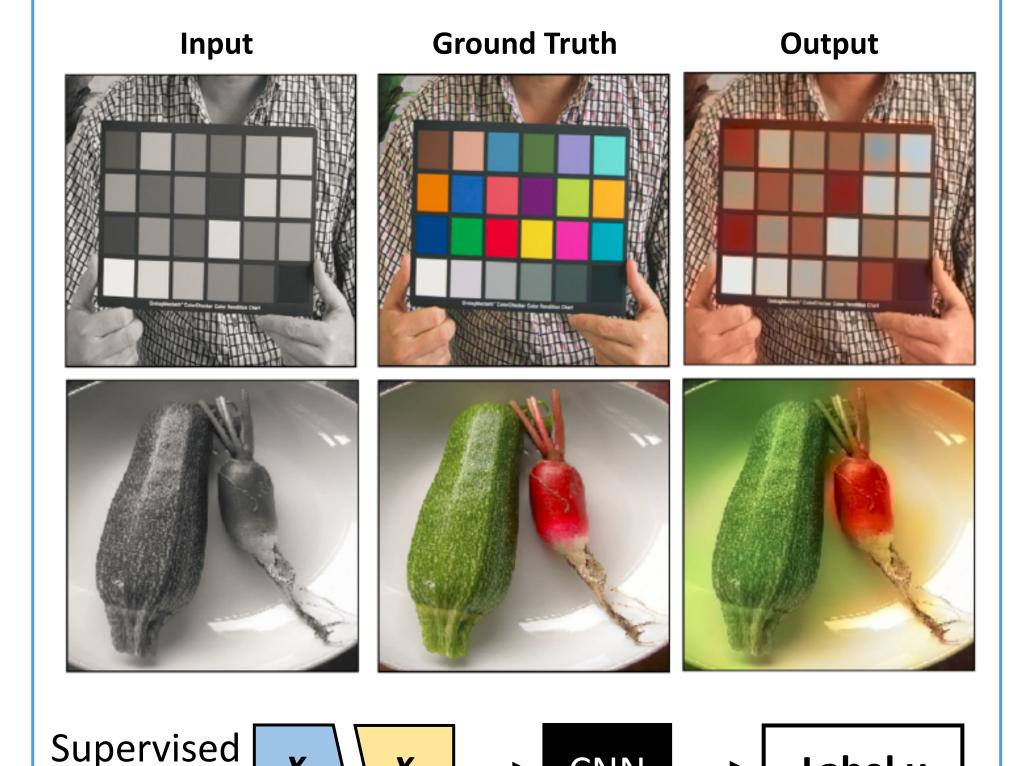
QUANTITATIVE COMPARISONS Use 3 metrics of evaluation

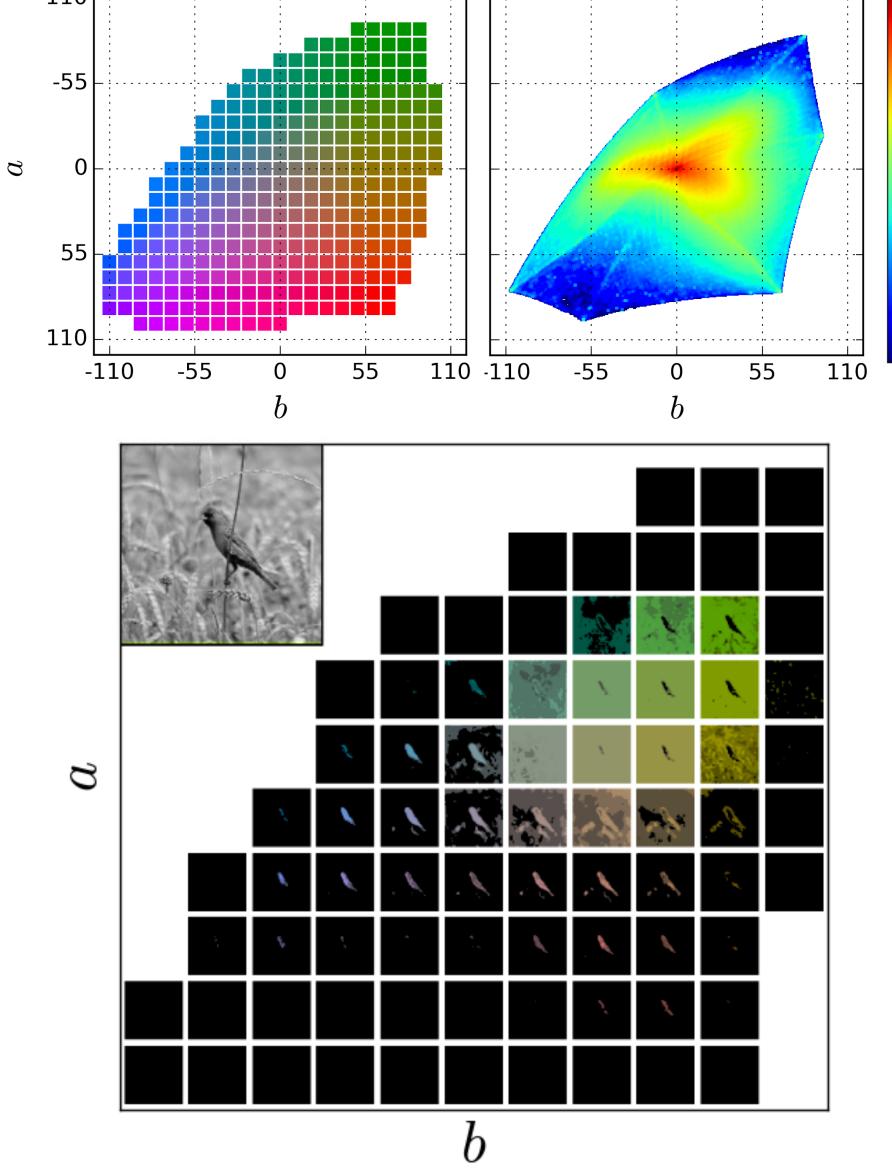
(1) per-pixel accuracy (AuC CMF)

- commonly used metric for colorization
- does not evaluate plausibility, or joint interaction between pixels

(2) semantic interpretability (VGG)

REPRESENTATION LEARNING VIA CROSS-CHANNEL ENCODING





3) perceptual realism (AMT)

	Model			AuC		VGG Top-1	\mathbf{AMT}
\mathbf{Method}	Params	Feats	Runtime	non-rebal	\mathbf{rebal}	Class Acc	Labeled
	(MB)	(MB)	(ms)	(%)	(%)	(%)	Real (%)
Ground Truth	—	—	_	100	100	68.3	50
Gray	—	—	—	89.1	58.0	52.7	—
Random	—	—	—	84.2	57.3	41.0	$13.0{\pm}4.4$
Dahl [2]	—	—	—	90.4	58.9	48.7	$18.3 {\pm} 2.8$
Larsson et al. [23]	588	495	122.1	91.7	65.9	59.4	$27.2{\pm}2.7$
Ours (L2)	129	127	17.8	91.2	64.4	54.9	$21.2{\pm}2.5$
Ours $(L2, ft)$	129	127	17.8	91.5	66.2	56.5	$23.9{\pm}2.8$
Ours (class)	129	142	22.1	91.6	65.1	56.6	$25.2{\pm}2.7$
Ours (full)	129	142	22.1	89.5	67.3	56.0	32.3±2.2

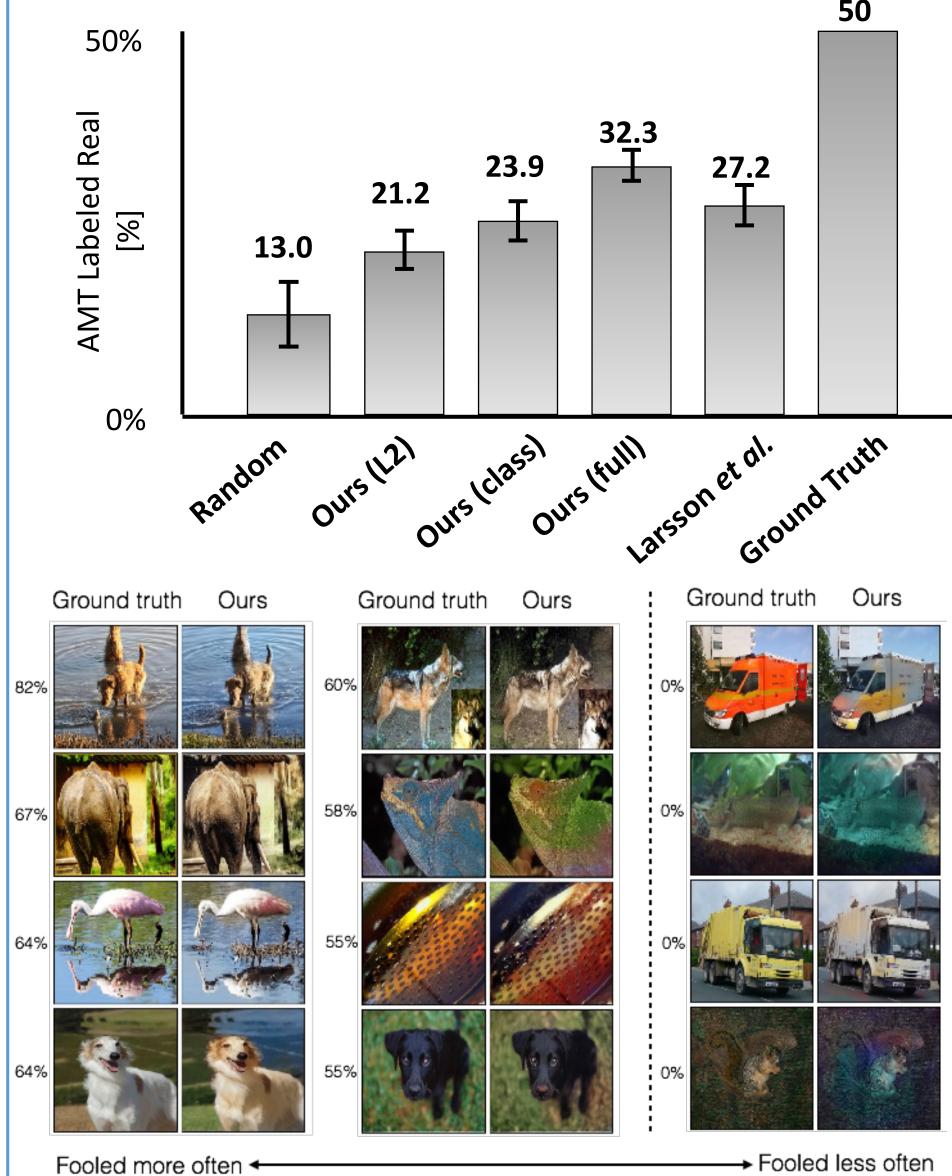
PERCEPTUAL REALISM TEST (AMT LABELED REAL)

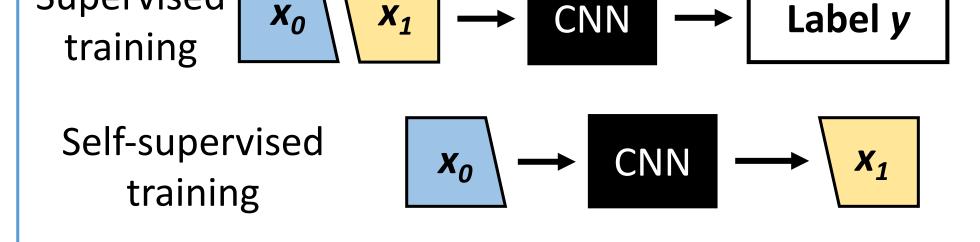
We introduce AMT as novel framework to evaluate *visual plausibility* of synthesized results

Test Procedure

- Participants asked to identify the generated vs ground truth image

- 1600 images evaluations per algorithm

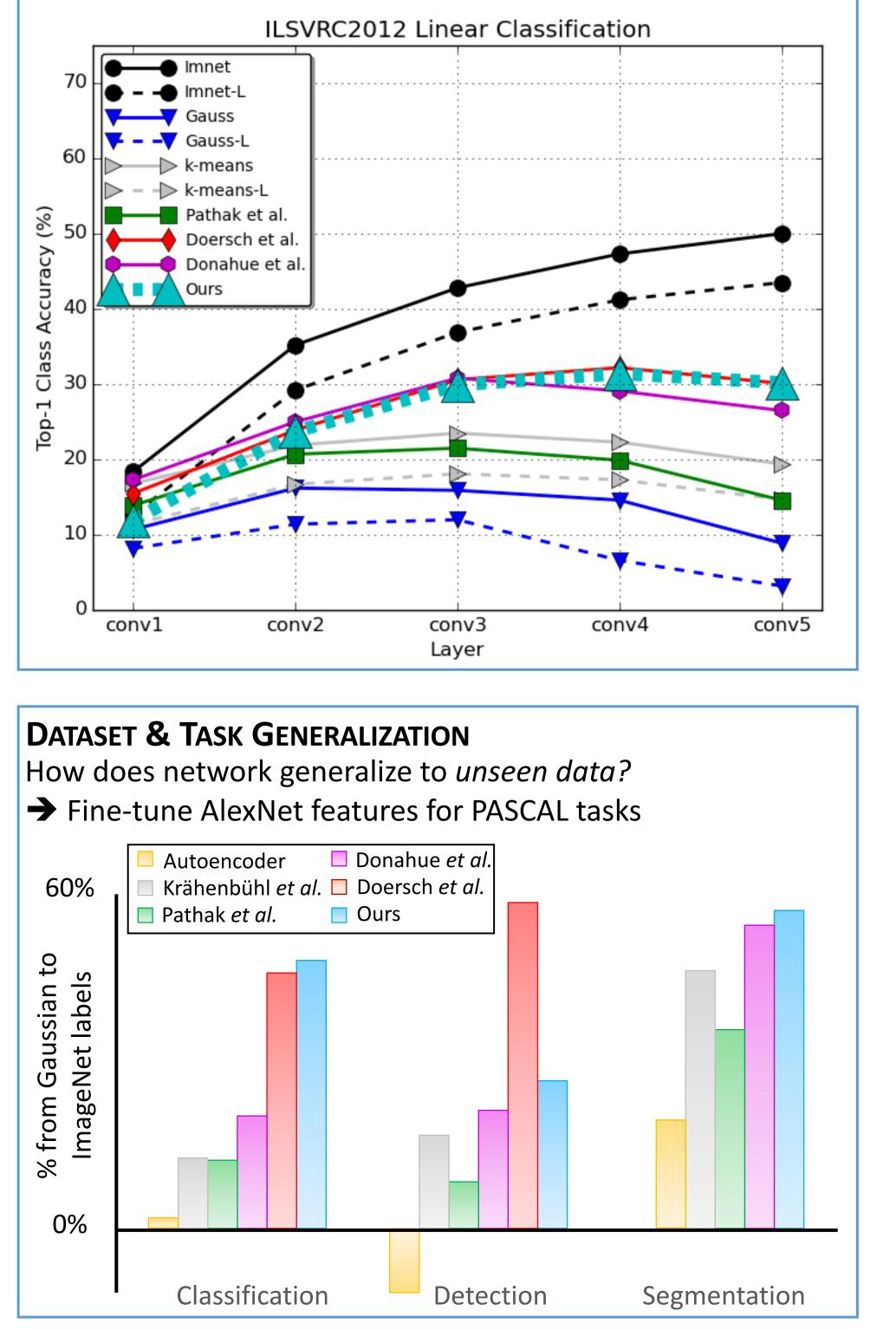


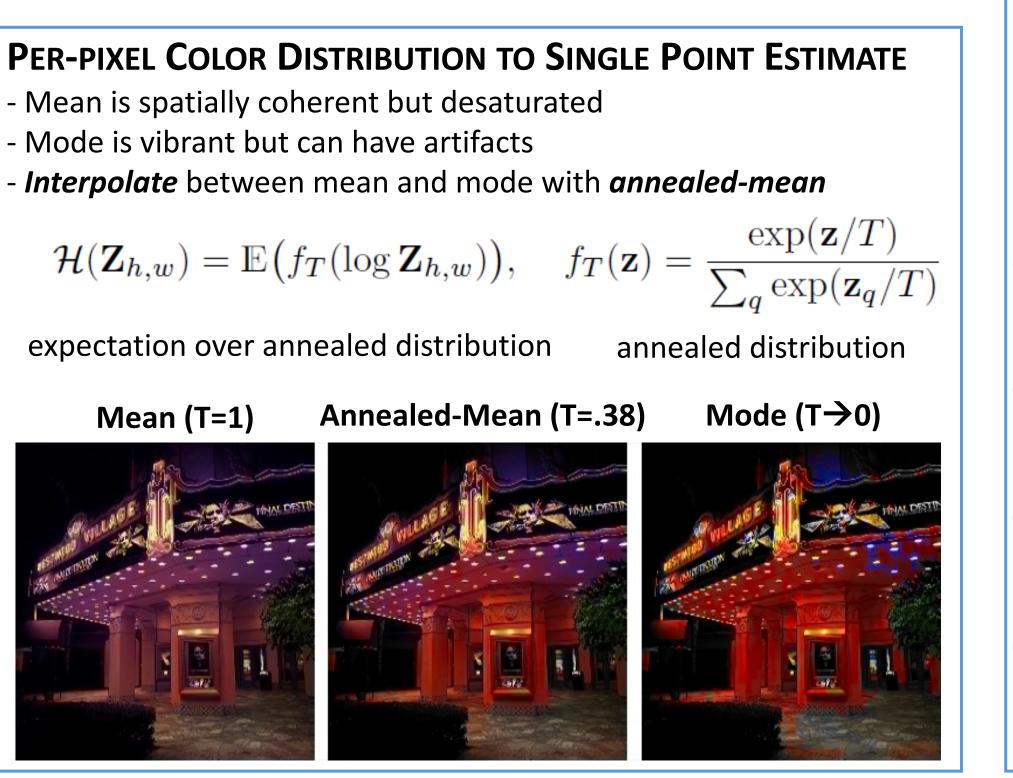


TASK GENERALIZATION

How does colorization task generalize to semantics?

→ Train linear classifiers on top of frozen AlexNet features for 1000-way ImageNet Classification





Colorful Image Colorization

Richard Zhang Phillip Isola Alexei A. Efros Department of Electrical Engineering and Computer Sciences, UC Berkeley

PROBLEM STATEMENT Given a grayscale image, predict the color

Input: Grayscale image L channel

Output: Color information Concatenate (*L*,*ab*) for plausible colorization *ab* channels

Our contributions

1) Graphics Task of Colorization

a) set a new high-water mark on the task by training on 1M photos b) design an appropriate objective function that handles the multimodal uncertainty and captures a wide diversity c) introduce a novel framework for testing colorization algorithms, potentially applicable to other image synthesis tasks

2) Colorization as Representation Learning

a) introduce colorization task as instance of *cross-channel encoding* b) evaluate colorization for representation learning, demonstrate competitive performance in self-supervision framework

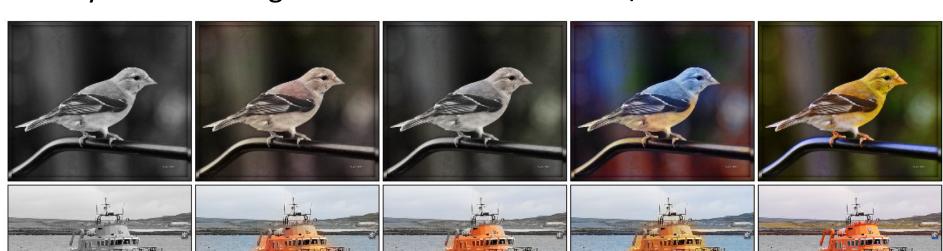
INHERENT AMBIGUITY

SELECTED IMAGENET RESULTS

QUALITATIVE COMPARISONS

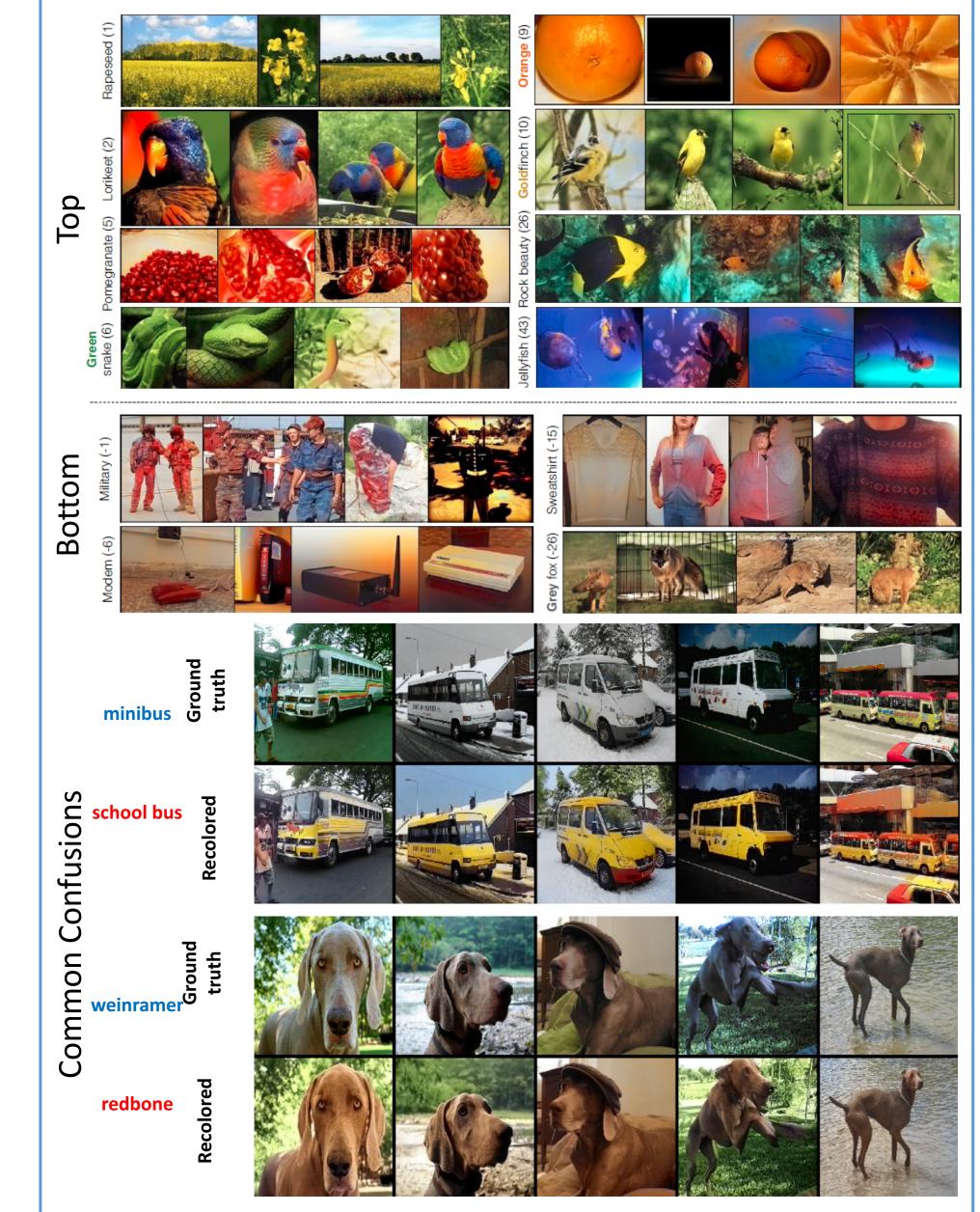
Success Cases

Classification Ground Truth Grayscale L2 Regression Classification w/ Rebal



Additional examples, Try our model! richzhang.github.io/colorization

SEMANTIC INTERPRETABILITY OF RESULTS (VGG CLASSIFICATION)



Multiple plausible colorizations may exist \rightarrow L2 loss is inadequate for this problem

OUR LOSS FUNCTION

Grayscale Image to color distribution

- *multinomial classification* problem
- quantize *ab* space into grid size 10, keep 313 bins in gamut - cross entropy loss

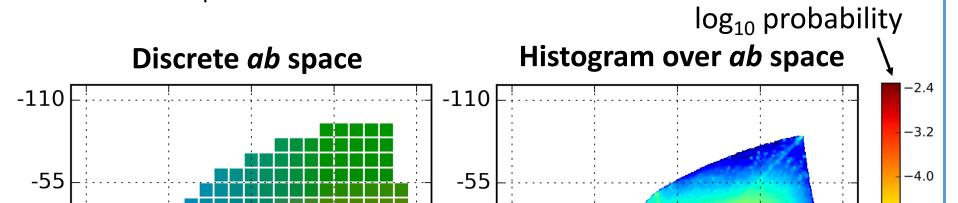
$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} v(\mathbf{Z}_{h, w}) \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

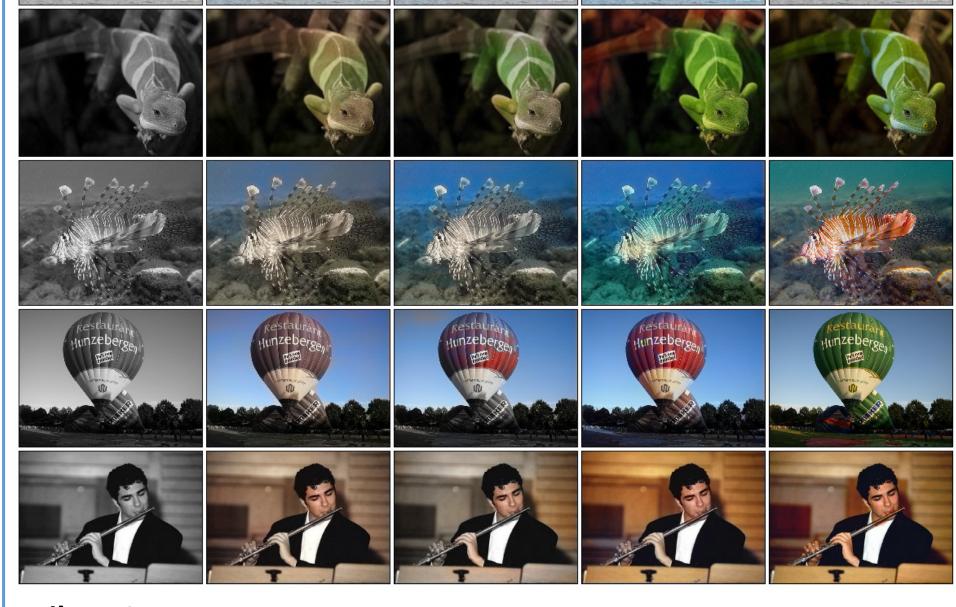
Rarity weighting Target distribution Predicted distribution • Class rebalancing to encourage learning of rare colors

$$v(\mathbf{Z}_{h,w}) = \mathbf{w}_{q^*}, \text{ where } q^* = \arg \max_q \mathbf{Z}_{h,w,q}$$

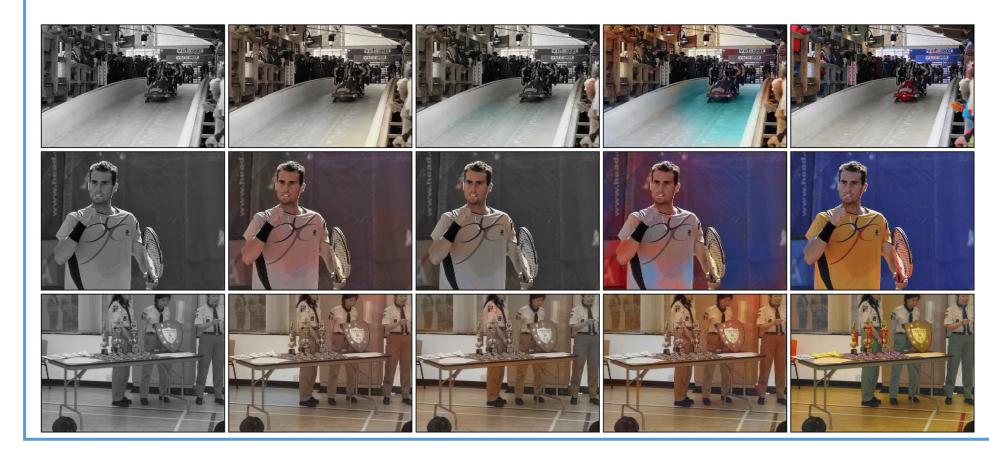
 $\mathbf{w} \propto \left((1-\lambda)\widetilde{\mathbf{p}} + \frac{\lambda}{Q} \right)^{-1}, \quad \mathbb{E}[\mathbf{w}] = \sum_q \widetilde{\mathbf{p}}_q \mathbf{w}_q = 1$

reweighting empirical distribution combine with uniform

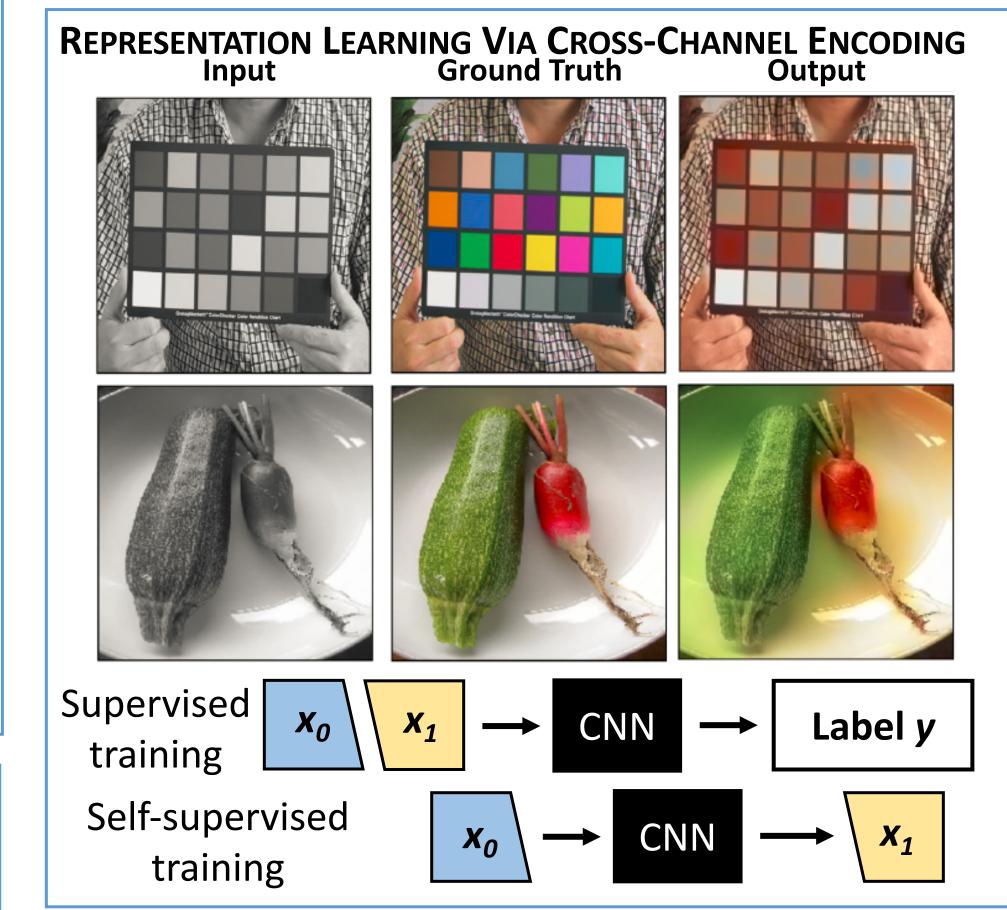


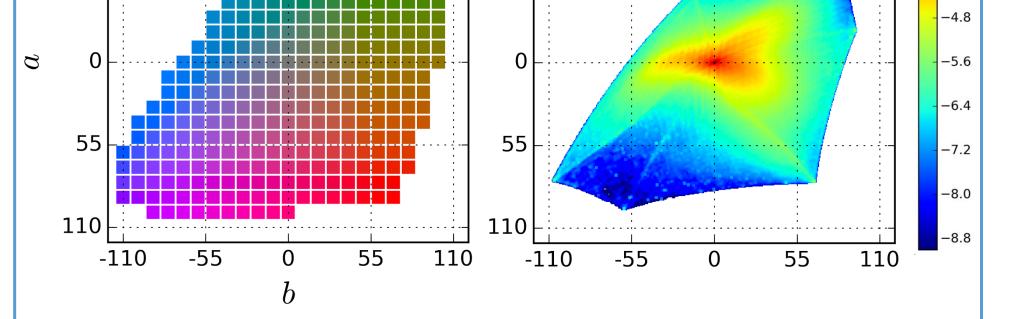


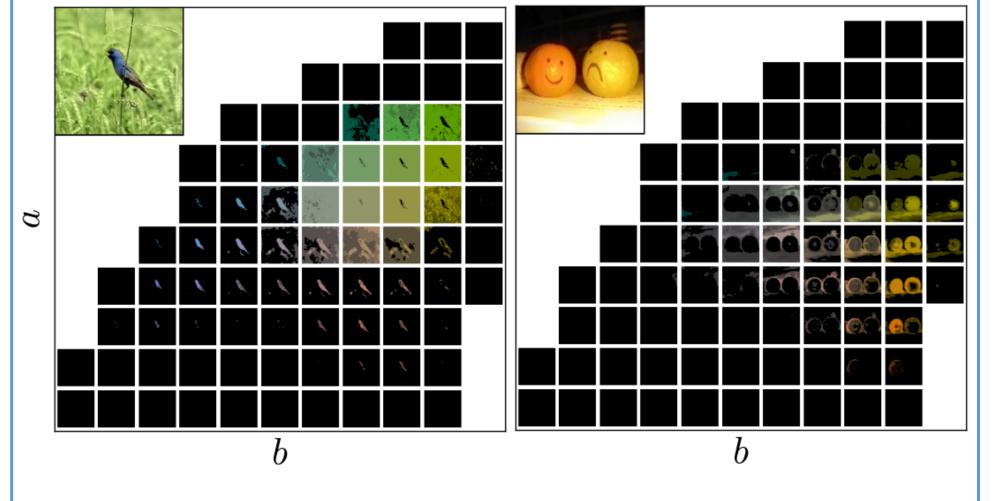
Failure Cases Classification Ground Truth Grayscale L2 Regression Classification w/ Rebal



QUANTITATIVE COMPARISONS

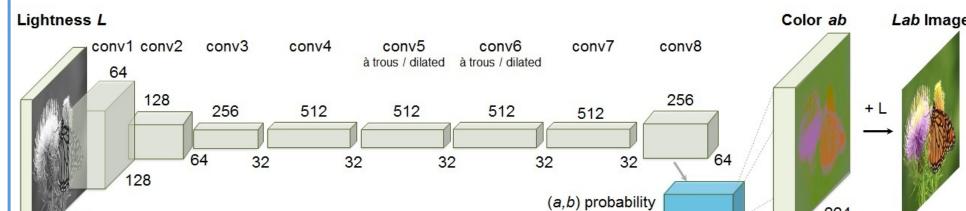






NETWORK ARCHITECTURE

Fully convolutional architecture, VGG-style

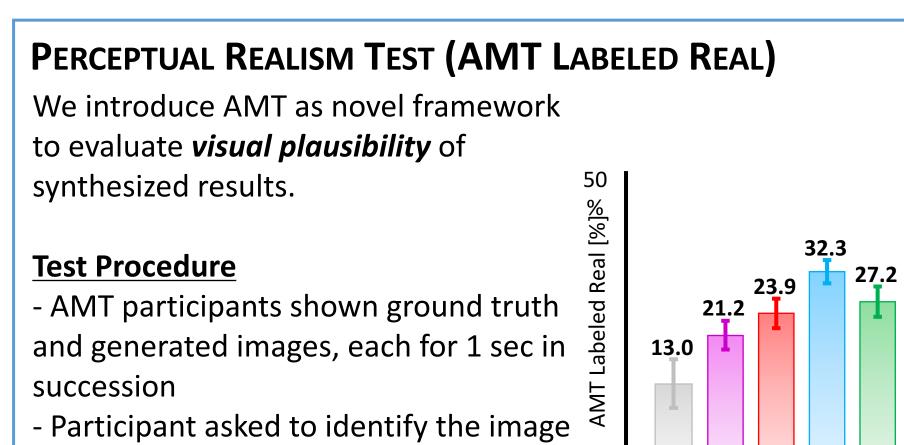


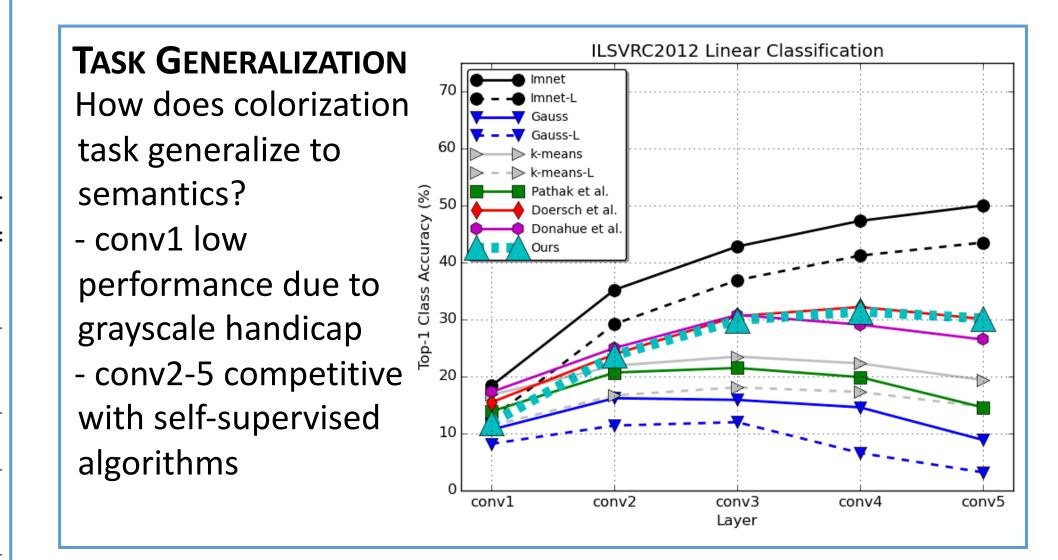
Use 3 metrics of evaluation

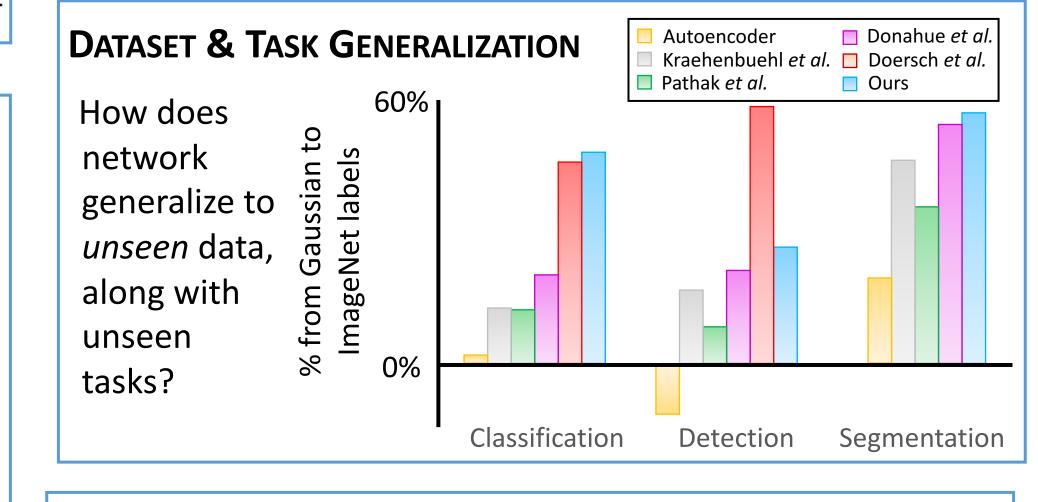
- (1) per-pixel accuracy (AuC CMF)
- commonly used metric for colorization
- does not evaluate plausibility, or joint interaction between pixels
- classification without rebalancing produces most "accurate" colors
- (2) semantic interpretability (VGG)

(3) perceptual realism (AMT)

	Model			\mathbf{AuC}		VGG Top-1	\mathbf{AMT}
\mathbf{Method}	Params	Feats	Runtime	non-rebal	\mathbf{rebal}	Class Acc	Labeled
	(MB)	(MB)	(ms)	(%)	(%)	(%)	Real (%)
Ground Truth	_	—	_	100	100	68.3	50
Gray	—	—	—	89.1	58.0	52.7	—
Random	—	—	—	84.2	57.3	41.0	$13.0{\pm}4.4$
Dahl [2]	_	_	_	90.4	58.9	48.7	18.3 ± 2.8
Larsson et al. [23]	588	495	122.1	91.7	65.9	59.4	$27.2{\pm}2.7$
Ours (L2)	129	127	17.8	91.2	64.4	54.9	$21.2{\pm}2.5$
Ours $(L2, ft)$	129	127	17.8	91.5	66.2	56.5	$23.9{\pm}2.8$
Ours (class)	129	142	22.1	91.6	65.1	56.6	$25.2{\pm}2.7$
Ours (full)	129	142	22.1	89.5	67.3	56.0	32.3±2.2







313 64

PER-PIXEL COLOR DISTRIBUTION TO SINGLE POINT ESTIMATE

- Mean is spatially coherent but desaturated
- Mode is vibrant but can have artifacts
- *Interpolate* between mean and mode with *annealed-mean*

 $\mathcal{H}(\mathbf{Z}_{h,w}) = \mathbb{E}\left(f_T(\log \mathbf{Z}_{h,w})\right), \quad f_T(\mathbf{z}) = \frac{\operatorname{Cap}(\mathbf{z}_f - \mathbf{z}_f)}{\sum_q \exp(\mathbf{z}_q / T)}$ expectation over annealed distribution annealed distribution

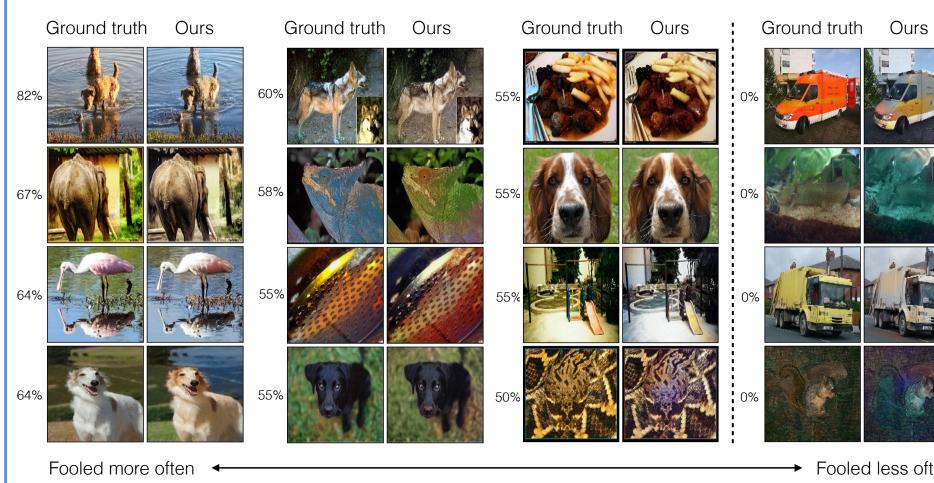
with "fake" colors

- 160 images evaluated for each algorithm, each evaluated ~10 times Conclusions
- Improvement in visual plausibility observed when using multinomial classification loss rather than L2 regression
- Additional improvement observed using class-rebalancing term

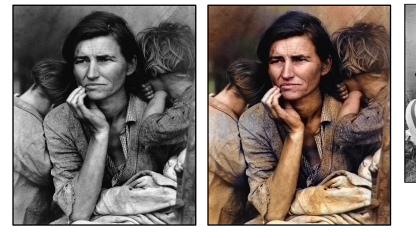
0%

om Ul2 Class Full et al. Truth

Fooled less often

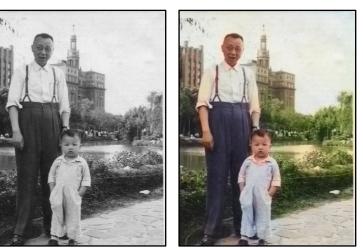


LEGACY BLACK & WHITE PHOTOS



Sunday on the Banks of the River Seine. 1938.

Dorothea Lange, Migrant Mother, 1936.



Amateur family photo, 1956

Photo of Elvis Presley