Sensor Fusion for Semantic Segmentation of Urban Scenes
Richard Zhang1 Stefan A. Candra1 Kai Vetter1,2 Avideh Zakhor1
1Department of Electrical Engineering and Computer Science, UC Berkeley
2Department of Nuclear Engineering, UC Berkeley

Introduction

Goal: effectively fuse information from multiple modalities to obtain semantic information

Contributions:
- information from multiple scales considered
- late fusion used to maximally leverage training data
- validated on KITTI data \cite{Geiger2013} with augmented labels; performance improvements obtained over state-of-the-art method \cite{Cadena2014}

Multi-Level Segmentation
- Multiple segmentations to consider cues from varying scales of information in classification
- Image: hierarchical segmentation \cite{Arbelaez2014} extracted
- Point cloud: 0.5 m supervoxels and connected component segmentation

Feature extraction
- Inference performed on small-scale segments
- Small-scale segments associated with large-scale segments
- Feature vectors of small-scale segments augmented with associated large-scale segment

Features Extracted

- Point cloud supervoxel features
- Image superpixel features

Classification & Late-Fusion
- Random Forest (RF) classifier used for each modality separately
 - PMFs of unimodal classifications
 - PMFs serve as compact and descriptive mid-level features
 - Post-processing pairwise CRF to provide spatial smoothing

Late-fusion Results
- Fusion improves performance for overlapping regions:
 - Img: 82.1% pc only, 87.7% fused
 - PC: 84.9% img only, 99.9% fused
 - Examples: sidewalk more likely to be classified correctly vs road only after fusion

Conclusions
- Dataset: 252 images (140 training, 112 testing) from 8 sequences
- Multiscale information provides strong cues for classifier
- late fusion greatly boosts performance
- Outperforms current state-of-the-art \cite{Cadena2014}
- Stuff classes well discriminated

Path Forward
- Add 2D+3D object detectors to increase performance on things
- Enforce consistency across temporal and 3D spatial dims
- Extend algorithm to additional modalities, e.g. infrared and hyperspectral, and validate
- Integrate with reconstruction algorithms

Qualitative Results

References
\cite{Geiger2013, Arbelaez2014, Cadena2014}