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PROBLEM STATEMENT

Evaluate how well metrics correspond with human perceptual judgments.

1) Collect a large-scale perceptual similarity dataset

2) Deep features across training objectives outperform widely-used
perceptual metrics (e.g., SSIM)

3) Train new metric (LPIPS) on perceptual judgments
=>» Try it: richzhang.github.io/PerceptualSimilarity/

Two ALTERNATIVE FORCED CHOICE (2AFC)

Goal: Collect large-scale set of human perceptual judgments on distortions
Procedure: Sample a patch. Distort it twice. Ask human which is smaller.

Distortions for Train&Val:

(1) Traditional distortions noise, photometric, blur, warps, compression
(2) CNN-Based distortions Randomly generated denoising autoencoders

by varying hyperparameters

Distortions for Val only:
(3) Real algorithms Outputs from superresolution, frame interpolation,

video deblurring, colorization algorithms
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The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
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QUALITATIVE EXAMPLES
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DEEP NETWORKS AS A PERCEPTUAL METRIC

Which patch (left or right) is closer to the middle patch?
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Two images = Distance Training on 2AFC
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JUST NOTICEABLE DIFFERENCES (JND)

Goal: Validate 2AFC with less “cognitively penetrable” test
Procedure: Ask human if 2 patches are identical or not

Evaluation: High correlation (p=.928) between 2AFC and JND
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Test on (1) Traditional + (2) CNN-based Distortions with off-the-shelf networks

Networks generalize “unreasonably” well across supervisory signals
(supervised, self-supervised, ) and architectures

D Human
. Low-level
exNet (Random)
exNet (Unsupervised)
exNet (Self-supervised)
70 o) [ Nets (Supervised:
68.9 i i Imagenet classification)

69 7 70.0
L2 SSIM FSIMc Random K-Means Split-Brain  BIGAN  Puzzle

Colorization
<

2AFC Test [%]

Squeeze AlexNet Human

QUALITATIVE COMPARISON

TRAINING ON PERCEPTUAL JUDGMENTS close SSM ———— |

Can we train with (1) traditional + (2) CNN-based distortions?
Critically, does it generalize to (3) real algorithms’?

[ Off-the-shelf (representation frozen, w=1)
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(1) Traditional + (2) CNN- based Dlstortlons (3) Real Algorithm Outputs
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Though SSIM was not designed to handle geometrlc dlstortlons it
IS commonly used, even when such distortions are a large factor.

Off-the-shelf networks already perform well. Training a linear layer (LPIPS) on top yields small performance boost.
But through representation leads to overfitting on specified distortion distribution.



richzhang.github.io/PerceptualSimilarity

