
Making Convolutional Networks Shift-Invariant Again

Richard Zhang 1

Abstract
Modern convolutional networks are not shift-
invariant, as small input shifts or translations
can cause drastic changes in the output. Com-
monly used downsampling methods, such as
max-pooling, strided-convolution, and average-
pooling, ignore the sampling theorem. The well-
known signal processing fix is anti-aliasing by
low-pass filtering before downsampling. How-
ever, simply inserting this module into deep net-
works degrades performance; as a result, it is
seldomly used today. We show that when inte-
grated correctly, it is compatible with existing ar-
chitectural components, such as max-pooling and
strided-convolution. We observe increased ac-
curacy in ImageNet classification, across several
commonly-used architectures, such as ResNet,
DenseNet, and MobileNet, indicating effective
regularization. Furthermore, we observe better
generalization, in terms of stability and robust-
ness to input corruptions. Our results demonstrate
that this classical signal processing technique has
been undeservingly overlooked in modern deep
networks.

1. Introduction
When downsampling a signal, such an image, the textbook
solution is to anti-alias by low-pass filtering the signal (Op-
penheim et al., 1999; Gonzalez & Woods, 1992). Without
it, high-frequency components of the signal alias into lower-
frequencies. This phenomenon is commonly illustrated in
movies, where wheels appear to spin backwards, known as
the Stroboscopic effect, due to the frame rate not meeting
the classical sampling criterion (Nyquist, 1928). Interest-
ingly, most modern convolutional networks do not worry
about anti-aliasing.

Early networks did employ a form of blurred-downsampling
– average pooling (LeCun et al., 1990). However, ample em-

1Adobe Research, San Francisco, CA. Correspondence to:
Richard Zhang <rizhang@adobe.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

pirical evidence suggests max-pooling provides stronger
task performance (Scherer et al., 2010), leading to its
widespread adoption. Unfortunately, max-pooling does not
provide the same anti-aliasing capability, and a curious, re-
cently uncovered phenomenon emerges – small shifts in
the input can drastically change the output (Engstrom et al.,
2019; Azulay & Weiss, 2018). As seen in Figure 1, network
outputs can oscillate depending on the input position.

Blurred-downsampling and max-pooling are commonly
viewed as competing downsampling strategies (Scherer
et al., 2010). However, we show that they are compatible.
Our simple observation is that max-pooling is inherently
composed of two operations: (1) evaluating the max opera-
tor densely and (2) naive subsampling. We propose to low-
pass filter between them as a means of anti-aliasing. This
viewpoint enables low-pass filtering to augment, rather than
replace max-pooling. As a result, shifts in the input leave
the output relatively unaffected (shift-invariance) and more
closely shift the internal feature maps (shift-equivariance).

Furthermore, this enables proper placement of the low-pass
filter, directly before subsampling. With this methodology,
practical anti-aliasing can be achieved with any existing
strided layer, such as strided-convolution, which is used in
more modern networks such as ResNet (He et al., 2016) and
MobileNet (Sandler et al., 2018).

A potential concern is that overaggressive filtering can result
in heavy loss of information, degrading performance. How-
ever, we actually observe increased accuracy in ImageNet
classification (Russakovsky et al., 2015) across architectures,
as well as increased robustness and stability to corruptions
and perturbations (Hendrycks et al., 2019). In summary:

• We integrate classic anti-aliasing to improve shift-
equivariance of deep networks. Critically, the method
is compatible with existing downsampling strategies.

• We validate on common downsampling strategies – max-
pooling, average-pooling, strided-convolution – in differ-
ent architectures. We test across multiple tasks – image
classification and image-to-image translation.

• For ImageNet classification, we find, surprisingly, that
accuracy increases, indicating effective regularization.

• Furthermore, we observe better generalization. Perfor-
mance is more robust and stable to corruptions such as
rotation, scaling, blurring, and noise variants.

Making Convolutional Networks Shift-Invariant Again

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
 o

f c
or

re
ct

 c
la

ss
Baseline Anti-aliased network (ours)

0.0 0.5 1.0
0.0

0.5

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 o
f c

or
re

ct
 c

la
ss

Baseline Anti-aliased network (ours)

0.0 0.5 1.0
0.0

0.5

1.0

A
le

xN
et

on
Im

ag
eN

et

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
 o

f c
or

re
ct

 c
la

ss
MaxPool (baseline) MaxBlurPool (ours)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 o
f c

or
re

ct
 c

la
ss

MaxPool (baseline) MaxBlurPool (ours)
V

G
G

on
C

IF
A

R

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 o
f c

or
re

ct
 c

la
ss

MaxPool MaxBlurPool

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 o
f c

or
re

ct
 c

la
ss

MaxPool MaxBlurPool

Figure 1. Classification stability for selected images. Predicted probability of the correct class changes when shifting the image. The
baseline (black) exhibits chaotic behavior, which is stabilized by our method (blue). We find this behavior across networks and datasets.
Here, we show selected examples using AlexNet on ImageNet (top) and VGG on CIFAR10 (bottom). Code and anti-aliased versions of
popular networks are available at https://richzhang.github.io/antialiased-cnns/.

2. Related Work
Local connectivity and weight sharing have been a cen-
tral tenet of neural networks, including the Neocogni-
tron (Fukushima & Miyake, 1982), LeNet (LeCun et al.,
1998) and modern networks such as Alexnet (Krizhevsky
et al., 2012), VGG (Simonyan & Zisserman, 2015),
ResNet (He et al., 2016), and DenseNet (Huang et al., 2017).
In biological systems, local connectivity was famously dis-
covered in a cat’s visual system (Hubel & Wiesel, 1962).
Recent work has strived to add additional invariances, such
as rotation, reflection, and scaling (Sifre & Mallat, 2013;
Bruna & Mallat, 2013; Kanazawa et al., 2014; Cohen &
Welling, 2016; Worrall et al., 2017; Esteves et al., 2018). We
focus on shift-invariance, which is often taken for granted.

Though different properties have been engineered into net-
works, what factors and invariances does an emergent rep-
resentation actually learn? Qualitative analysis of deep
networks have included showing patches which activate hid-
den units (Girshick et al., 2014; Zhou et al., 2015), actively
maximizing hidden units (Mordvintsev et al., 2015), and
mapping features back into pixel space (Zeiler & Fergus,
2014; Hénaff & Simoncelli, 2016; Mahendran & Vedaldi,
2015; Dosovitskiy & Brox, 2016a;b; Nguyen et al., 2017).
Our analysis is focused on a specific, low-level property and
is complementary to these approaches.

A more quantitative approach for analyzing networks is mea-
suring representation or output changes (or robustness to

changes) in response to manually generated perturbations to
the input, such as image transformations (Goodfellow et al.,
2009; Lenc & Vedaldi, 2015; Azulay & Weiss, 2018), geo-
metric transforms (Fawzi & Frossard, 2015; Ruderman et al.,
2018), and CG renderings with various shape, poses, and
colors (Aubry & Russell, 2015). A related line of work is ad-
versarial examples, where input perturbations are purposely
directed to produce large changes in the output. These per-
turbations can be on pixels (Goodfellow et al., 2014a;b),
a single pixel (Su et al., 2019), small deformations (Xiao
et al., 2018), or even affine transformations (Engstrom et al.,
2019). We aim to make the network robust to the simplest
of these types of attacks and perturbations: shifts. In doing
so, we also observe increased robustness across other types
of corruptions and perturbations (Hendrycks et al., 2019).

Classic hand-engineered computer vision and image pro-
cessing representations, such as SIFT (Lowe, 1999),
wavelets, and image pyramids (Adelson et al., 1984; Burt
& Adelson, 1987) also extract features in a sliding win-
dow manner, often with some subsampling factor. As dis-
cussed in Simoncelli et al. (1992), literal shift-equivariance
cannot hold when subsampling. Shift-equivariance can be
recovered if features are extracted densely, for example tex-
tons (Leung & Malik, 2001), the Stationary Wavelet Trans-
form (Fowler, 2005), and DenseSIFT (Vedaldi & Fulkerson,
2008). Deep networks can also be evaluated densely, by
removing striding and making appropriate changes to sub-
sequent layers by using á trous/dilated convolutions (Chen
et al., 2015; 2018; Yu & Koltun, 2016; Yu et al., 2017). This

https://richzhang.github.io/antialiased-cnns/

Making Convolutional Networks Shift-Invariant Again

MaxPool
(stride 2)

AvgPool
(stride 2)

Conv
(stride 2)

ReLU
Conv

(stride 1)

ReLU

BlurPool
(stride 2)

Antialiased
modifications

Common
downsampling

layers

Antialiased modifications

Common downsampling layers

Max
(stride 1)

BlurPool
(stride 2)

BlurPool
(stride 2)

MaxPool
(stride 2)

Conv
(stride 2)

ReLU AvgPool
(stride 2)

BlurPool
(stride 2)

Conv
(stride 1)

ReLU BlurPool
(stride 2)

Max
(stride 1)

BlurPool
(stride 2)

Anti-aliased

MaxPool
(stride 2)

Conv
(stride 2)

ReLU AvgPool
(stride 2)

BlurPool
(stride 2)

Conv
(stride 1)

ReLU BlurPool
(stride 2)

Max
(stride 1)

BlurPool
(stride 2)

Baseline

Max Pooling Average PoolingStrided-Convolution
Figure 2. Anti-aliasing common downsampling layers. (Top) Max-pooling, strided-convolution, and average-pooling can each be
better antialiased (bottom) with our proposed architectural modification. An example on max-pooling is shown below.

Shift-equivariance lost;
heavy aliasing

max()

Baseline
(MaxPool)

(1) Max (dense evaluation)
Preserves shift-equivariance

max()

(2) Subsampling
Shift-eq. lost; heavy aliasing

max()
max()

(1) Max (dense evaluation) (2) Anti-aliasing filter
Preserves shift-eq. Preserves shift-eq.

max()

(3) Subsampling
Shift eq. lost, but with reduced aliasing

conv
�

Anti-aliased
(MaxBlurPool) max()

Blur kernel

Figure 3. Anti-aliased max-pooling. (Top) Pooling does not preserve shift-equivariance. It is functionally equivalent to densely-evaluated
pooling, followed by subsampling. The latter ignores the Nyquist sampling theorem and loses shift-equivariance. (Bottom) We low-pass
filter between the operations. This keeps the first operation, while anti-aliasing the appropriate signal. Anti-aliasing and subsampling can
be combined into one operation, which we refer to as BlurPool.

comes at great computation and memory cost. Our work
investigates improving shift-equivariance with minimal ad-
ditional computation, by blurring before subsampling.

Early networks employed average pooling (LeCun et al.,
1990), which is equivalent to blurred-downsampling with a
box filter. However, work (Scherer et al., 2010) has found
max-pooling to be more effective, which has consequently
become the predominant method for downsampling. While
previous work (Scherer et al., 2010; Hénaff & Simoncelli,
2016; Azulay & Weiss, 2018) acknowledges the drawbacks
of max-pooling and benefits of blurred-downsampling, they
are viewed as separate, discrete choices, preventing their
combination. Interestingly, Lee et al. (2016) does not ex-
plore low-pass filters, but does propose to softly gate be-
tween max and average pooling. However, this does not
fully utilize the anti-aliasing capability of average pooling.

Mairal et al. (2014) derive a network architecture, motivated

by translation invariance, named Convolutional Kernel Net-
works. While theoretically interesting (Bietti & Mairal,
2017), CKNs perform at lower accuracy than contempo-
raries, resulting in limited usage. Interestingly, a byproduct
of the derivation is a standard Gaussian filter; however, no
guidance is provided on its proper integration with existing
network components. Instead, we demonstrate practical
integration with any strided layer, and empirically show per-
formance increases on a challenging benchmark – ImageNet
classification – on widely-used networks.

3. Methods
3.1. Preliminaries
Deep convolutional networks as feature extractors Let
an image with resolution H × W be represented by
X ∈ RH×W×3. An L-layer CNN can be expressed
as a feature extractor Fl(X) ∈ RHl×Wl×Cl , with layer

Making Convolutional Networks Shift-Invariant Again

Baseline (MaxPool) Anti-aliased (MaxBlurPool)

0 1 2 3 4 5 6 7 8
Spatial Position

0.0

0.5

1.0

1.5

Si
gn

al

Input MaxPool (Shift-0) MaxPool (Shift-1)

0 1 2 3 4 5 6 7 8
Spatial Position

0.0

0.5

1.0

1.5

Si
gn

al

Max
Max+Blur

MaxBlurPool (Shift-0)
MaxBlurPool (Shift-1)

Figure 4. Illustrative 1-D example of sensitivity to shifts. We illustrate how downsampling affects shift-equivariance with a toy example.
(Left) An input signal is in light gray line. Max-pooled (k = 2, s = 2) signal is in blue squares. Simply shifting the input and then
max-pooling provides a completely different answer (red diamonds). (Right) The blue and red points are subsampled from a densely
max-pooled (k = 2, s = 1) intermediate signal (thick black line). We low-pass filter this intermediate signal and then subsample from it,
shown with green and magenta triangles, better preserving shift-equivariance.

l ∈ {0, 1, ..., L}, spatial resolution Hl ×Wl and Cl chan-
nels. Each feature map can also be upsampled to original
resolution, F̃l(X) ∈ RH×W×Cl .

Shift-equivariance and invariance A function F̃ is shift-
equivariant if shifting the input equally shifts the output,
meaning shifting and feature extraction are commutable.

Shift∆h,∆w(F̃(X)) = F̃(Shift∆h,∆w(X)) ∀ (∆h,∆w)
(1)

A representation is shift-invariant if shifting the input results
in an identical representation.

F̃(X) = F̃(Shift∆h,∆w(X)) ∀ (∆h,∆w) (2)

Periodic-N shift-equivariance/invariance In some cases,
the definitions in Eqns. 1, 2 may hold only when shifts
(∆h,∆w) are integer multiples of N. We refer to such sce-
narios as periodic shift-equivariance/invariance. For exam-
ple, periodic-2 shift-invariance means that even-pixel shifts
produce an identical output, but odd-pixel shifts may not.

Circular convolution and shifting Edge artifacts are an
important consideration. When shifting, information is lost
on one side and has to be filled in on the other.

In our CIFAR10 classification experiments, we use circular
shifting and convolution. When the convolutional kernel
hits the edge, it “rolls” to the other side. Similarly, when
shifting, pixels are rolled off one edge to the other.

[Shift∆h,∆w(X)]h,w,c = X(h−∆h)%H,(w−∆w)%W,c ,

where % is the modulus function
(3)

The modification minorly affects performance and could be
potentially mitigated by additional padding, at the expense
of memory and computation. But importantly, this affords
us a clean testbed. Any loss in shift-equivariance is purely
due to characteristics of the feature extractor.

An alternative is to take a shifted crop from a larger image.
We use this approach for ImageNet experiments, as it more
closely matches standard train and test procedures.

3.2. Anti-aliasing to improve shift-equivariance

Conventional methods for reducing spatial resolution – max-
pooling, average pooling, and strided convolution – all break
shift-equivariance. We propose improvements, shown in
Figure 2. We start by analyzing max-pooling.

MaxPool→MaxBlurPool Consider the example
[0, 0, 1, 1, 0, 0, 1, 1] signal in Figure 4 (left). Max-
pooling (kernel k=2, stride s=2) will result in [0, 1, 0, 1].
Simply shifting the input results in a dramatically different
answer of [1, 1, 1, 1]. Shift-equivariance is lost. These
results are subsampling from an intermediate signal – the
input densely max-pooled (stride-1), which we simply
refer to as “max”. As illustrated in Figure 3 (top), we
can write max-pooling as a composition of two functions:
MaxPoolk,s = Subsamples ◦Maxk.

The Max operation preserves shift-equivariance, as it is
densely evaluated in a sliding window fashion, but subse-
quent subsampling does not. We simply propose to add an
anti-aliasing filter with kernel m×m, denoted as Blurm, as
shown in Figure 4 (right). During implementation, blurring
and subsampling are combined, as commonplace in image
processing. We call this function BlurPoolm,s.

MaxPoolk,s → Subsamples◦ Blurm ◦Maxk
= BlurPoolm,s ◦Maxk

(4)

Sampling after low-pass filtering gives [.5, 1, .5, 1] and
[.75, .75, .75, .75]. These are closer to each other and better
representations of the intermediate signal.

StridedConv→ConvBlurPool Strided-convolutions suffer
from the same issue, and the same method applies.

Relu ◦ Convk,s → BlurPoolm,s ◦ Relu ◦ Convk,1 (5)

Making Convolutional Networks Shift-Invariant Again

Importantly, this analogous modification applies conceptu-
ally to any strided layer, meaning the network designer can
keep their original operation of choice.

AveragePool→BlurPool Blurred downsampling with a box
filter is the same as average pooling. Replacing it with a
stronger filter provides better shift-equivariance. We exam-
ine such filters next.

AvgPoolk,s → BlurPoolm,s (6)

Anti-aliasing filter selection The method allows for a
choice of blur kernel. We test m×m filters ranging from
size 2 to 5, with increasing smoothing. The weights are nor-
malized. The filters are the outer product of the following
vectors with themselves.

• Rectangle-2 [1, 1]: moving average or box filter; equiva-
lent to average pooling or “nearest” downsampling

• Triangle-3 [1, 2, 1]: two box filters convolved together;
equivalent to bilinear downsampling

• Binomial-5 [1, 4, 6, 4, 1]: the box filter convolved with
itself repeatedly; the standard filter used in Laplacian pyra-
mids (Burt & Adelson, 1987)

4. Experiments
4.1. Testbeds

CIFAR Classification To begin, we test classification of
low-resolution 32 × 32 images. The dataset contains 50k
training and 10k validation images, classified into one of
10 categories. We dissect the VGG architecture (Simonyan
& Zisserman, 2015), showing that shift-equivariance is a
signal-processing property, progressively lost in each down-
sampling layer.

ImageNet Classification We then test on large-scale clas-
sification on 224 × 224 resolution images. The dataset
contains 1.2M training and 50k validation images, clas-
sified into one of 1000 categories. We test across differ-
ent architecture families – AlexNet (Krizhevsky & Hinton,
2009), VGG (Simonyan & Zisserman, 2015), ResNet (He
et al., 2016), DenseNet (Huang et al., 2017), and MobileNet-
v2 (Sandler et al., 2018) – with different downsampling
strategies, as described in Table 1. Furthermore, we test the
classifier robustness using the Imagenet-C and ImageNet-P
datasets (Hendrycks et al., 2019).

Conditional Image Generation Finally, we show that the
same aliasing issues in classification networks are also
present in conditional image generation networks. We test
on the Labels→Facades (Tyleček & Šára, 2013; Isola et al.,
2017) dataset, where a network is tasked to generated a
256×256 photorealistic image from a label map. There are
400 training and 100 validation images.

ImageNet Classification Generation

Alex- VGG Res- Dense- Mobile- U-
Net Net Net Netv2 Net

StridedConv 1� – 4‡ 1‡ 5‡ 8
MaxPool 3 5 1 1 – –
AvgPool – – – 3 – –

Table 1. Testbeds. We test across tasks (ImageNet classification
and Labels→Facades) and network architectures. Each architec-
ture employs different downsampling strategies. We list how often
each is used here. We can antialias each variant. �This convolution
uses stride 4 (all others use 2). We only apply the antialiasing at
stride 2. Evaluating the convolution at stride 1 would require large
computation at full-resolution. ‡For the same reason, we do not
antialias the first strided-convolution in these networks.

4.2. Shift-Invariance/Equivariance Metrics

Ideally, a shift in the input would result in equally shifted
feature maps internally:

Internal feature distance. We examine internal fea-
ture maps with d(Shift∆h,∆w(F̃(X)), F̃(Shift∆h,∆w(X)))
(left & right-hand sides of Eqn. 1). We use cosine distance,
as common for deep features (Kiros et al., 2015; Zhang
et al., 2018).

We can also measure the stability of the output:

Classification consistency. For classification, we
check how often the network outputs the same clas-
sification, given the same image with two different
shifts: EX,h1,w1,h2,w21{arg maxP (Shifth1,w1(X)) =
arg maxP (Shifth2,w2(X))}.

Generation stability. For image translation, we test if
a shift in the input image generates a correspondingly
shifted output. For simplicity, we test horizontal shifts.
EX,∆wPSNR

(
Shift0,∆w(F(X))),F(Shift0,∆w(X))

)
.

4.3. Internal shift-equivariance

We first test on the CIFAR dataset using the VGG13-bn (Si-
monyan & Zisserman, 2015) architecture.

We dissect the progressive loss of shift-equivariance by in-
vestigating the VGG architecture internally. The network
contains 5 blocks of convolutions, each followed by max-
pooling (with stride 2), followed by a linear classifier. For
purposes of our understanding, MaxPool layers are broken
into two components – before and after subsampling, e.g.,
max1 and pool1, respectively. In Figure 5 (top), we show
internal feature distance, as a function of all possible shift-
offsets (∆h,∆w) and layers. All layers before the first
downsampling, max1, are shift-equivariant. Once down-
sampling occurs in pool1, shift-equivariance is lost. How-
ever, periodic-N shift-equivariance still holds, as indicated
by the stippling pattern in pool1, and each subsequent
subsampling doubles the factor N.

Making Convolutional Networks Shift-Invariant Again

(a) Baseline VGG13bn (using MaxPool)

(b) Anti-aliased VGG13bn (using MaxBlurPool, Bin-5)
Figure 5. Deviation from perfect shift-equivariance, throughout VGG. Feature distance between left & right-hand sides of the shift-
equivariance condition (Eqn 1). Each pixel in each heatmap is a shift (∆h,∆w). Blue indicates perfect shift-equivariance; red indicates
large deviation. Note that the dynamic ranges of distances are different per layer. For visualization, we calibrate by calculating the mean
distance between two different images, and mapping red to half the value. Accumulated downsampling factor is in [brackets]; in layers
pool5, classifier, and softmax, shift-equivariance and shift-invariance are equivalent, as features have no spatial extent. Layers
up to max1 have perfect equivariance, as no downsampling yet occurs. (a) On the baseline network, shift-equivariance is reduced each
time downsampling takes place. Periodic-N shift-equivariance holds, with N doubling with each downsampling. (b) With our antialiased
network, shift-equivariance is better maintained, and the resulting output is more shift-invariant.

In Figure 5 (bottom), we plot shift-equivariance maps
with our anti-aliased network, using MaxBlurPool. Shift-
equivariance is clearly better preserved. In particular, the
severe drop-offs in downsampling layers do not occur. Im-
proved shift-equivariance throughout the network cascades
into more consistent classifications in the output, as shown
by some selected examples in Figure 1. This study uses a
Bin-5 filter, trained without data augmentation. The trend
holds for other filters and when training with augmentation.

4.4. Large-scale ImageNet classification

4.4.1. SHIFT-INVARIANCE AND ACCURACY

We next test on large-scale image classification of Ima-
geNet (Russakovsky et al., 2015). In Figure 6, we show
classification accuracy and consistency, across variants
of several architectures – VGG, ResNet, DenseNet, and
MobileNet-v2. The off-the-shelf networks are labeled as
Baseline, and we use standard training schedules from the
publicly available PyTorch (Paszke et al., 2017) repository
for our anti-aliased networks. Each architecture has a differ-
ent downsampling strategy, shown in Table 1. We typically
refer to the popular ResNet50 as a running example; note
that we see similar trends across network architectures.

Improved shift-invariance We apply progressively
stronger filters – Rect-2, Tri-3, Bin-5. Doing so increases
ResNet50 stability by +0.8%, +1.7%, and +2.1%, respec-
tively. Note that doubling layers – going to ResNet101 –
only increases stability by +0.6%. Even a simple, small
low-pass filter, directly applied to ResNet50, outpaces this.
As intended, stability increases across architectures (points
move upwards in Figure 6).

Improved classification Filtering improves the shift-
invariance. How does it affect absolute classification perfor-
mance? We find that across the board, performance actually
increases (points move to the right in Figure 6). The filters
improve ResNet50 by +0.7% to +0.9%. For reference, dou-
bling the layers to ResNet101 increases accuracy by +1.2%.
A low-pass filter makes up much of this ground, without
adding any learnable parameters. This is a surprising, unex-
pected result, as low-pass filtering removes information, and
could be expected to reduce performance. On the contrary,
we find that it serves as effective regularization, and these
widely-used methods improve with simple anti-aliasing. As
ImageNet-trained nets often serve as the backbone for down-
stream tuning, this improvement may be observed across
other applications as well.

Making Convolutional Networks Shift-Invariant Again

70 72 74 76 78 80
Accuracy

84

85

86

87

88

89

90

91

92

93
Co

ns
ist

en
cy

VGG16
VGG16bn

DenseNet121

ResNet18

ResNet34

ResNet50

ResNet101

Mobilenet-v2
Baseline
Anti-aliased (Rect-2)
Anti-aliased (Tri-3)
Anti-aliased (Bin-5)

Figure 6. ImageNet Classification consistency vs. accuracy. Up
(more consistent to shifts) and to the right (more accurate) is better.
Different shapes correspond to the baseline (circle) or variants of
our anti-aliased networks (bar, triangle, pentagon for length 2, 3,
5 filters, respectively). We test across network architectures. As
expected, low-pass filtering helps shift-invariance. Surprisingly,
classification accuracy is also improved.

The best performing filter varies by architecture, but all
filters improve over the baseline. We recommend using the
Tri-3 or Bin-5 filter. If shift-invariance is especially desired,
stronger filters can be used.

4.4.2. OUT-OF-DISTRIBUTION ROBUSTNESS

We have shown increased stability (to shifts), as well as accu-
racy. Next, we test the generalization capability the classifier
in these two aspects, using datasets from Hendrycks et al.
(2019). We test stability to perturbations other than shifts.
We then test accuracy on systematically corrupted images.
Results are shown in Table 2, averaged across corruption
types. We show the raw, unnormalized average, along with
a weighted “normalized” average, as recommended.

Stability to perturbations The ImageNet-P
dataset (Hendrycks et al., 2019) contains short video
clips of a single image with small perturbations added,
such as variants of noise (Gaussian and shot), blur (motion
and zoom), simulated weather (snow and brightness), and
geometric changes (rotation, scaling, and tilt). Stability is
measured by flip rate (mFR) – how often the top-1 classifi-
cation changes, on average, in consecutive frames. Baseline
ResNet50 flips 7.9% of the time; adding anti-aliasing Bin-5
reduces by 1.0%. While antialiasing provides increased
stability to shifts by design, a “free”, emergent property is
increased stability to other perturbation types.

Robustness to corruptions We observed increased accu-
racy on clean ImageNet. Here, we also observe more grace-
ful degradation when images are corrupted. In addition

Normalized average Unnormalized average

ImNet-C ImNet-P ImNet-C ImNet-P

mCE mFR mCE mFR

Baseline 76.4 58.0 60.6 7.92
Rect-2 75.2 56.3 59.5 7.71
Tri-3 73.7 51.9 58.4 7.05
Bin-5 73.4 51.2 58.1 6.90

Table 2. Accuracy and stability robustness. Accuracy in
ImageNet-C, which contains systematically corrupted ImageNet
images, measured by mean corruption error mCE (lower is bet-
ter). Stability on ImageNet-P, which contains perturbed image
sequences, measured by mean flip rate mFR (lower is better). We
show raw, unnormalized scores, as well as scores normalized to
AlexNet, as used in Hendrycks et al. (2019). Anti-aliasing im-
proves both accuracy and stability over the baseline. All networks
are variants of ResNet50.

to the previously explored corruptions, ImageNet-C con-
tains impulse noise, defocus and glass blur, simulated frost
and fog, and various digital alterations of contrast, elastic
transformation, pixelation and jpeg compression. The geo-
metric perturbations are not used. ResNet50 has mean error
rate of 60.6%. Anti-aliasing with Bin-5 reduces the error
rate by 2.5%. As expected, the more “high-frequency” cor-
ruptions, such as adding noise and pixelation, show greater
improvement. Interestingly, we see improvements even with
“low-frequency” corruptions, such defocus blur and zoom
blur operations as well.

Together, these results indicate that a byproduct of antialias-
ing is a more robust, generalizable network. Though mo-
tivated by shift-invariance, we actually observe increased
stability to other perturbation types, as well as increased
accuracy, both on clean and corrupted images.

4.5. Conditional image generation (Label→Facades)

We test on image generation, outputting an image of a facade
given its semantic label map (Tyleček & Šára, 2013), in a
GAN setup (Goodfellow et al., 2014a; Isola et al., 2017).
Our classification experiments indicate that anti-aliasing is
a natural choice for the discriminator, and is used in the
recent StyleGAN method (Karras et al., 2019). Here, we
explore its use in the generator, for the purposes of obtaining
a shift-equivariant image-to-image translation network.

Baseline We use the pix2pix method (Isola et al., 2017).
The method uses U-Net (Ronneberger et al., 2015), which
contains 8 downsampling and 8 upsampling layers, with
skip connections to preserve local information. No anti-
aliasing filtering is applied in down or upsampling layers in
the baseline. In Figure 7, we show a qualitative example,
focusing in on a specific window. In the baseline (top), as
the input X shifts horizontally by ∆w, the vertical bars on
the generated window also shift. The generations start with

Making Convolutional Networks Shift-Invariant Again

8 to 16 pixels

8 to 16 pixels

O
ur

s
Ba

se
lin

e

Δw = 0

2 vertical bars 1 vertical bar, shifting to the left

Consistent window pattern generated

Δw = 7

Generated window

Difference from
unshifted generation

Generated window

Difference from
unshifted generation

Generated image

Δw = 0

Generated windows (different input shifts)
In

pu
t

Increasing horizontal shift
Figure 7. Selected example of generation instability. The left two images are generated facades from label maps. For the baseline
method (top), input shifts cause different window patterns to emerge, due to naive downsampling and upsampling. Our method (bottom)
stabilizes the output, generating the same window pattern, regardless the input shift.

Baseline Rect-2 Tri-3 Bin-4 Bin-5
Stability [dB] 29.0 30.1 30.8 31.2 34.4

TV Norm ×100 7.48 7.07 6.25 5.84 6.28

Table 3. Generation stability PSNR (higher is better) between
generated facades, given two horizontally shifted inputs. More ag-
gressive filtering in the down and upsampling layers leads to a more
shift-equivariant generator. Total variation (TV) of generated
images (closer to ground truth images 7.80 is better). Increased
filtering decreases the frequency content of generated images.

two bars, to a single bar, and eventually oscillates back to
two bars. A shift-equivariant network would provide the
same resulting facade, no matter the shift.

Applying anti-aliasing We augment the strided-
convolution downsampling by blurring. The U-Net
also uses upsampling layers, without any smoothing.
Similar to the subsampling case, this leads to aliasing,
in the form of grid artifacts (Odena et al., 2016). We
mirror the downsampling by applying the same filter after
upsampling. Note that applying the Rect-2 and Tri-3 filters
while upsampling correspond to “nearest” and “bilinear”
upsampling, respectively. By using the Tri-3 filter, the same
window pattern is generated, regardless of input shift, as
seen in Figure 7 (bottom).

We measure similarity using peak signal-to-noise ratio be-
tween generated facades with shifted and non-shifted inputs:
EX,∆wPSNR(Shift0,∆w(F (X)), F (Shift0,∆w(X)))). In
Table 3, we show that the smoother the filter, the more
shift-equivariant the output.

A concern with adding low-pass filtering is the loss of abil-
ity to generate high-frequency content, which is critical for

generating high-quality imagery. Quantitatively, in Table 3,
we compute the total variation (TV) norm of the generated
images. Qualitatively, we observe that generation quality
typically holds with the Tri-3 filter and subsequently de-
grades. In the supplemental material, we show examples of
applying increasingly aggressive filters. We observe a boost
in shift-equivariance while maintaining generation quality,
and then a tradeoff between the two factors.

These experiments demonstrate that the technique can make
a drastically different architecture (U-Net) for a different
task (generating pixels) more shift-equivariant.

5. Conclusions and Discussion
Shift-equivariance is lost in modern deep networks, as com-
monly used downsampling layers ignore Nyquist sampling
and alias. We integrate low-pass filtering to anti-alias, a
common signal processing technique. The simple modifica-
tion achieves higher consistency, across architectures and
downsampling techniques. In addition, in classification, we
observe surprising boosts in accuracy and robustness.

Anti-aliasing for shift-equivariance is well-understood. A
future direction is to better understand how it affects and
improves generalization, as we observed empirically. Other
directions include the potential benefit to downstream ap-
plications, such as nearest-neighbor retrieval, improving
temporal consistency in video models, robustness to adver-
sarial examples, and high-level vision tasks such as detec-
tion. Adding the inductive bias of shift-invariance serves
as “built-in” shift-based data augmentation. This is poten-
tially applicable to online learning scenarios, where the data
distribution is changing.

Making Convolutional Networks Shift-Invariant Again

ACKNOWLEDGMENTS

I am especially grateful to Eli Shechtman for helpful discus-
sion and guidance. Michaël Gharbi, Andrew Owens, and
anonymous reviewers provided beneficial feedback on ear-
lier drafts. I thank labmates and mentors, past and present
– Sylvain Paris, Oliver Wang, Alexei A. Efros, Angjoo
Kanazawa, Taesung Park, and Phillip Isola – for their help-
ful comments and encouragement. I thank Dan Hendrycks
for discussion about robustness tests on ImageNet-C/P.

CHANGELOG

v1 ArXiv preprint. Paper accepted to ICML 2019.

v2 ICML camera ready. Added additional networks. Added
robustness measures. ImageNet consistency numbers and
AlexNet results re-evaluated; small fluctuations but no
changes in general trends. Compressed main paper to 8
pages. Cifar results moved to supplemental. Small changes
to text.

References
Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J.,

and Ogden, J. M. Pyramid methods in image processing.
RCA engineer, 29(6):33–41, 1984.

Aubry, M. and Russell, B. C. Understanding deep features
with computer-generated imagery. In ICCV, 2015.

Azulay, A. and Weiss, Y. Why do deep convolutional net-
works generalize so poorly to small image transforma-
tions? In arXiv, 2018.

Bietti, A. and Mairal, J. Invariance and stability of deep
convolutional representations. In NIPS, 2017.

Bruna, J. and Mallat, S. Invariant scattering convolution
networks. TPAMI, 2013.

Burt, P. J. and Adelson, E. H. The laplacian pyramid as a
compact image code. In Readings in Computer Vision,
pp. 671–679. Elsevier, 1987.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. Semantic image segmentation with deep
convolutional nets and fully connected crfs. In ICLR,
2015.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and
fully connected crfs. TPAMI, 2018.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In ICML, 2016.

Dosovitskiy, A. and Brox, T. Generating images with per-
ceptual similarity metrics based on deep networks. In
NIPS, 2016a.

Dosovitskiy, A. and Brox, T. Inverting visual representations
with convolutional networks. In CVPR, 2016b.

Engstrom, L., Tsipras, D., Schmidt, L., and Madry, A. A ro-
tation and a translation suffice: Fooling cnns with simple
transformations. In ICML, 2019.

Esteves, C., Allen-Blanchette, C., Zhou, X., and Daniilidis,
K. Polar transformer networks. In ICLR, 2018.

Fawzi, A. and Frossard, P. Manitest: Are classifiers really
invariant? In BMVC, 2015.

Fowler, J. E. The redundant discrete wavelet transform and
additive noise. IEEE Signal Processing Letters, 12(9):
629–632, 2005.

Fukushima, K. and Miyake, S. Neocognitron: A self-
organizing neural network model for a mechanism of
visual pattern recognition. In Competition and coopera-
tion in neural nets, pp. 267–285. Springer, 1982.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich
feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR, 2014.

Gonzalez, R. C. and Woods, R. E. Digital Image Processing.
Pearson, 2nd edition, 1992.

Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., and Ng, A. Y.
Measuring invariances in deep networks. In NIPS, 2009.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NIPS, 2014a.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. ICLR, 2014b.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Hénaff, O. J. and Simoncelli, E. P. Geodesics of learned
representations. In ICLR, 2016.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-training
can improve model robustness and uncertainty. In ICLR,
2019.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
CVPR, 2017.

Hubel, D. H. and Wiesel, T. N. Receptive fields, binocular
interaction and functional architecture in the cat’s visual
cortex. The Journal of physiology, 160(1):106–154, 1962.

Making Convolutional Networks Shift-Invariant Again

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In CVPR, 2017.

Kanazawa, A., Sharma, A., and Jacobs, D. Locally scale-
invariant convolutional neural networks. In NIPS Work-
shop, 2014.

Karras, T., Laine, S., and Aila, T. A style-based generator
architecture for generative adversarial networks. ICLR,
2019.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun,
R., Torralba, A., and Fidler, S. Skip-thought vectors. In
NIPS, 2015.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. E., and Jackel, L. D. Hand-
written digit recognition with a back-propagation network.
In NIPS, 1990.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, C.-Y., Gallagher, P. W., and Tu, Z. Generalizing pool-
ing functions in convolutional neural networks: Mixed,
gated, and tree. In AISTATS, 2016.

Lenc, K. and Vedaldi, A. Understanding image represen-
tations by measuring their equivariance and equivalence.
In CVPR, 2015.

Leung, T. and Malik, J. Representing and recognizing the
visual appearance of materials using three-dimensional
textons. IJCV, 2001.

Lowe, D. G. Object recognition from local scale-invariant
features. In ICCV, 1999.

Mahendran, A. and Vedaldi, A. Understanding deep image
representations by inverting them. In CVPR, 2015.

Mairal, J., Koniusz, P., Harchaoui, Z., and Schmid, C. Con-
volutional kernel networks. In NIPS, 2014.

Mordvintsev, A., Olah, C., and Tyka, M. Deepdream-a
code example for visualizing neural networks. Google
Research, 2:5, 2015.

Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., and
Yosinski, J. Plug & play generative networks: Conditional
iterative generation of images in latent space. In CVPR,
2017.

Nyquist, H. Certain topics in telegraph transmission the-
ory. Transactions of the American Institute of Electrical
Engineers, pp. 617–644, 1928.

Odena, A., Dumoulin, V., and Olah, C. Deconvolution and
checkerboard artifacts. Distill, 2016. doi: 10.23915/
distill.00003. URL http://distill.pub/2016/
deconv-checkerboard.

Oppenheim, A. V., Schafer, R. W., and Buck, J. R. Discrete-
Time Signal Processing. Pearson, 2nd edition, 1999.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
MICCAI, 2015.

Ruderman, A., Rabinowitz, N. C., Morcos, A. S., and Zo-
ran, D. Pooling is neither necessary nor sufficient for
appropriate deformation stability in cnns. In arXiv, 2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. IJCV, 115(3):211–252, 2015.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

Scherer, D., Muller, A., and Behnke, S. Evaluation of pool-
ing operations in convolutional architectures for object
recognition. In ICANN. 2010.

Sifre, L. and Mallat, S. Rotation, scaling and deformation
invariant scattering for texture discrimination. In CVPR,
2013.

Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and
Heeger, D. J. Shiftable multiscale transforms. IEEE trans-
actions on Information Theory, 38(2):587–607, 1992.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In ICLR,
2015.

Su, J., Vargas, D. V., and Sakurai, K. One pixel attack
for fooling deep neural networks. IEEE Transactions on
Evolutionary Computation, 2019.

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard

Making Convolutional Networks Shift-Invariant Again

Tyleček, R. and Šára, R. Spatial pattern templates for recog-
nition of objects with regular structure. In German Con-
ference on Pattern Recognition, pp. 364–374. Springer,
2013.

Vedaldi, A. and Fulkerson, B. VLFeat: An open and
portable library of computer vision algorithms. http:
//www.vlfeat.org/, 2008.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and
Brostow, G. J. Harmonic networks: Deep translation and
rotation equivariance. In CVPR, 2017.

Xiao, C., Zhu, J.-Y., Li, B., He, W., Liu, M., and Song, D.
Spatially transformed adversarial examples. ICLR, 2018.

Yu, F. and Koltun, V. Multi-scale context aggregation by
dilated convolutions. ICLR, 2016.

Yu, F., Koltun, V., and Funkhouser, T. Dilated residual
networks. In CVPR, 2017.

Zeiler, M. D. and Fergus, R. Visualizing and understanding
convolutional networks. In ECCV, 2014.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In CVPR, 2018.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba,
A. Object detectors emerge in deep scene cnns. In ICLR,
2015.

Supplementary Material
Here, we show additional results and experiments for CI-
FAR classification, ImageNet expanded results, and condi-
tional image generation.

A. CIFAR Classification
A.1. Classification results

We train both without and with shift-based data augmenta-
tion. We evaluate on classification accuracy and consistency.
The results are shown in Table 5 and Figure 8.

In the main paper, we showed internal activations on
the older VGG (Simonyan & Zisserman, 2015) network.
Here, we also present classification accuracy and consis-
tency results on the output, along with the more modern
DenseNet (Huang et al., 2017) architecture.

Training without data augmentation Without the bene-
fit of seeing shifts at training time, the baseline network
produces inconsistent classifications – random shifts of the
same image only agree 88.1% of the time. Our anti-aliased

Architecture Classification (CIFAR)

VGG13-bn DenseNet-40-12

StridedConv – –
MaxPool 5 –
AvgPool – 2

Table 4. Testbeds (CIFAR10 Architectures). We use slightly dif-
ferent architectures for VGG (Simonyan & Zisserman, 2015) and
DenseNet (Huang et al., 2017) than the ImageNet counterparts.

network, with the MaxBlurPool operator, increases consis-
tency. The larger the filter, the more consistent the output
classifications. This result agrees with our expectation and
theory – improving shift-equivariance throughout the net-
work should result in more consistent classifications across
shifts, even when such shifts are not seen at training.

In this regime, accuracy clearly increases with consistency,
as seen with the blue markers in Figure 8. Filtering does
not destroy the signal or make learning harder. On the con-
trary, shift-equivariance serves as “built-in” augmentation,
indicating more efficient data usage.

Training with data augmentation In principle, networks
can learn to be shift-invariant from data. Is data augmen-
tation all that is needed to achieve shift-invariance? By
applying the Rect-2 filter, a large increase in consistency,
96.6 → 97.6, can be had at a small decrease in accuracy
93.8→ 93.7. Even when seeing shifts at training, antialias-
ing increases consistency. From there, stronger filters can
increase consistency, at the expense of accuracy.

DenseNet results We show a summary of VGG and
DenseNet in Table 4. DenseNet uses comparatively fewer
downsampling layers – 2 average-pooling layers instead of
5 max-pooling layers. With just two downsampling lay-
ers, the baseline still loses shift-invariance. Even when
training with data augmentation, replacing average-pooling
with blurred-pooling increases both consistency and even
minorly improves accuracy. Note that the DenseNet archi-
tecture performs stronger than VGG to begin with. In this
setting, the Bin-7 BlurPool operator works best for both con-
sistency and accuracy. Again, applying the operator serves
are “built-in” data augmentation, performing strongly even
without shifts at train time.

How do the learned convolutional filters change? Our
proposed change smooths the internal feature maps for pur-
poses of downsampling. How does training with this layer
affect the learned convolutional layers? We measure spa-
tial smoothness using the normalized Total Variation (TV)
metric proposed in Ruderman et al. (2018). A higher value
indicates a filter with more high-frequency components. A
lower value indicates a smoother filter. As shown in Fig-
ure 10, the anti-aliased networks (red-purple) actually learn

http://www.vlfeat.org/
http://www.vlfeat.org/

Making Convolutional Networks Shift-Invariant Again

Net Filter shape # Taps Weights

Train w/o augmentation Train w/ augmentation

Accuracy Consistency Accuracy Consistency
None Rand None Rand

VGG

Delta (baseline) 1 [1] 91.6 87.4 88.1 93.4 93.8 96.6
Rectangle 2 [1, 1] 92.8 89.3 90.5 93.9 93.7 97.6
Triangle 3 [1, 2, 1] 93.1 91.4 93.9 93.6 93.6 98.0
Binomial 4 [1, 3, 3, 1] 93.0 91.1 93.2 93.4 93.2 98.1
Binomial 5 [1, 4, 6, 4, 1] 93.2 92.6 96.3 93.1 93.2 98.4
Binomial 6 [1, 5, 10, 10, 5, 1] 93.0 92.4 96.9 93.4 93.4 98.6
Binomial 7 [1, 6, 15, 20, 15, 6, 1] 93.0 93.0 98.1 93.2 93.2 98.8

Dense

Delta 1 [1] 92.0 89.9 91.5 93.9 93.9 97.3
Rect (baseline) 2 [1, 1] 93.0 92.3 94.8 94.4 94.4 97.7

Triangle 3 [1, 2, 1] 93.9 93.5 96.7 94.5 94.5 98.3
Binomial 5 [1, 4, 6, 4, 1] 94.4 94.0 98.1 94.5 94.5 98.8
Binomial 7 [1, 6, 15, 20, 15, 6, 1] 94.5 94.3 98.8 94.5 94.6 98.9

Table 5. CIFAR Classification accuracy and consistency Results across blurring filters and training scenarios (without and with data
augmentation). We evaluate classification accuracy without shifts (Accuracy – None) and on random shifts (Accuracy – Random), as
well as classification consistency.

VGG-13 (Simonyan & Zisserman, 2015) DenseNet-40-12 (Huang et al., 2017)

0.91 0.92 0.93 0.94 0.95
Accuracy

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Co
ns

ist
en

cy

No augment.
Rect-2
Binom-5

With augment.
Tri-3
Binom-6

Delta-1 (baseline)
Binom-4
Binom-7

0.91 0.92 0.93 0.94 0.95
Accuracy

0.88

0.90

0.92

0.94

0.96

0.98

1.00

No augment.
Rect-2 (baseline)
Binom-7

With augment.
Tri-3

Delta-1
Binom-5

Figure 8. CIFAR10 Classification consistency vs. accuracy. VGG (left) and DenseNet (right) networks. Up (more consistent) and to
the right (more accurate) is better. Number of sides corresponds to number of filter taps used (e.g., diamond for 4-tap filter); colors
correspond to filters trained without (blue) and with (pink) shift-based data augmentation, using various filters. We show accuracy for no
shift when training without shifts, and a random shift when training with shifts.

Making Convolutional Networks Shift-Invariant Again

Delta (Baseline) Rect-2 Triangle-3 Binomial-4

Binomial-5 Binomial-6 Binomial-7

0 5 10 15 20 25 30

0

5

10

15

20

25

30
0.84

0.86

0.88

0.90

0.92

0.94

16 12 8 4 0 4 8 12
Diagonal Shift [pix]

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

Delta (Baseline)
Rect-2

Triangle-3
Binomial-4

Binomial-5
Binomial-6

Binomial-7

Figure 9. Average accuracy as a function of shift. (Left) We show classification accuracy across the test set as a function of shift, given
different filters. (Right) We plot accuracy vs diagonal shift in the input image, across different filters. Note that accuracy degrades quickly
with the baseline, but as increased filtering is added, classifications become consistent across spatial positions.

conv1_1
conv1_2

conv2_1
conv2_2

conv3_1
conv3_2

conv4_1
conv4_2

conv5_1
conv5_2

Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

Fi
lte

r T
V

MaxPool [1] Delta
MaxBlurPool [1 1] Rect-2
MaxBlurPool [1 2 1] Tri-3
MaxBlurPool [1 3 3 1] Binomial-4
MaxBlurPool [1 4 6 4 1] Binomial-5
MaxBlurPool [1 5 10 10 5 1] Binomial-6
MaxBlurPool [1 6 15 20 15 6 1] Binomial-7

Figure 10. Total Variation (TV) by layer. We compute average
smoothness of learned conv filters per layer (lower is smoother).
Baseline MaxPool is in black, and adding additional blurring is
shown in colors. Note that the learned convolutional layers become
smoother, indicating that a smoother feature extractor is induced.

smoother filters throughout the network, relative to the base-
line (black). Adding in more aggressive low-pass filtering
further decreases the TV (increasing smoothness). This in-
dicates that our method actually induces a smoother feature
extractor overall.

Timing analysis The average speed of a forward pass
of VGG13bn using batch size 100 CIFAR images on a
GTX1080Ti GPU is 10.19ms. Evaluating Max at stride 1
instead of 2 adds 3.0%. From there, low-pass filtering with
kernel sizes 3, 5, 7 adds additional 5.5%, 7.6%, 9.3% time,
respectively, relative to baseline. The method can be imple-
mented more efficiently by separating the low-pass filter into
horizontal and vertical components, allowing added time to
scale linearly with filter size, rather than quadratically. In
total, the largest filter adds 12.3% per forward pass. This
is significantly cheaper than evaluating multiple forward

passes in an ensembling approach (1024× computation to
evaluate every shift), or evaluating each layer more densely
by exchanging striding for dilation (4×, 16×, 64×, 256×
computation for conv2-conv5, respectively). Given com-
putational resources, brute-force computation solves shift-
invariance.

Average accuracy across spatial positions In Figure 9, we
train without augmentation, and show how accuracy system-
atically degrades as a function of spatial shift. We observe
the following:

• On the left, the baseline heatmap shows that classification
accuracy holds when testing with no shift, but quickly
degrades when shifting.

• The proposed filtering decreases the degradation. Bin-7 is
largely consistent across all spatial positions.

• On the right, we plot the accuracy when making diag-
onal shifts to the input. As increased filtering is added,
classification accuracy becomes consistent in all positions.

Classification variation distribution The consistency
metric in the main paper looks at the hard classifica-
tion, discounting classifier confidence. Similar to Azu-
lay & Weiss (2018), we also compute the variation in
probability of correct classification (the traces shown
in Figure 3 in the main paper), given different shifts.
We can capture the variation across all possible shifts:√

V arh,w({Pcorrect class(Shifth,w(X))}).

In Figure 11, we show the distribution of classification vari-
ations, before and after adding in the low-pass filter. Even
with a small 2 × 2 filter, immediately variation decreases.
As the filter size is increased, the output classification vari-
ation continues to decrease. This has a larger effect when
training without data augmentation, but is still observable
when training with data augmentation.

Training with data augmentation with the baseline network
reduces variation. Anti-aliasing the networks reduces vari-

Making Convolutional Networks Shift-Invariant Again

10 5 10 4 10 3 10 2 10 1 100

Variation in probability of correct classification

0

200

400

600

800

1000

1200

1400

1600

Co
un

t i
n

CI
FA

R1
0

Te
st

 S
et

Train without data augmentation
MaxPool [1] Delta (Baseline)
MaxBlurPool [1 1] Rect-2
MaxBlurPool [1 2 1] Tri-3
MaxBlurPool [1 3 3 1] Binomial-4
MaxBlurPool [1 4 6 4 1] Binomial-5
MaxBlurPool [1 5 10 10 5 1] Binomial-6
MaxBlurPool [1 6 15 20 15 6 1] Binomial-7

10 5 10 4 10 3 10 2 10 1 100

Variation in probability of correct classification

0

200

400

600

800

1000

Co
un

t i
n

CI
FA

R1
0

Te
st

 S
et

Train with data augmentation

Figure 11. Distribution of per-image classification variation. We show the distribution of classification variation in the test set, (left)
without and (right) with data augmentation at training. Lower variation means more consistent classifications (and increased shift-
invariance). Training with data augmentation drastically reduces variation in classification. Adding filtering further decreases variation.

Train without Data Augmentation Train with Data Augmentation

0 2 4 6 8 10 12 14 16
Max adversarial shift [pix]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

MaxPool [1] Delta
MaxBlurPool [1 1] Rect-2
MaxBlurPool [1 2 1] Triangle-3
MaxBlurPool [1 3 3 1] Binomial-4
MaxBlurPool [1 4 6 4 1] Binomial-5
MaxBlurPool [1 5 10 10 5 1] Binomial-6
MaxBlurPool [1 6 15 20 15 6 1] Binomial-7

0 2 4 6 8 10 12 14 16
Max adversarial shift [pix]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MaxPool [1] Delta
MaxBlurPool [1 1] Rect-2
MaxBlurPool [1 2 1] Triangle-3
MaxBlurPool [1 3 3 1] Binomial-4
MaxBlurPool [1 4 6 4 1] Binomial-5
MaxBlurPool [1 5 10 10 5 1] Binomial-6
MaxBlurPool [1 6 15 20 15 6 1] Binomial-7

Figure 12. Robustness to shift-based adversarial attack. Classification accuracy as a function of the number of pixels an adversary is
allowed to shift the image. Applying our proposed filtering increases robustness, both without (left) and with right data augmentation.

ation in both scenarios. More aggressive filtering further
decreases variation.

Robustness to shift-based adversary In the main paper,
we show that anti-aliased the networks increases the classi-
fication consistency, while maintaining accuracy. A logical
consequence is increased accuracy in presence of a shift-
based adversary. We empirically confirm this in Figure 12
for VGG13 on CIFAR10. We compute classification accu-
racy as a function of maximum adversarial shift. A max
shift of 2 means the adversary can choose any of the 25
positions within a 5× 5 window. For the classifier to “win”,
it must correctly classify all of them correctly. Max shift

of 0 means that there is no adversary. Conversely, a max
shift of 16 means the image must be correctly classified at
all 32× 32 = 1024 positions.

Our primary observations are as follows:

• As seen in Figure 12 (left), the baseline network (gray) is
very sensitive to the adversary.

• Adding larger Binomial filters (from red to purple) in-
creases robustness to the adversary. In fact, Bin-7 filter
(purple) without augmentation outperforms the baseline
(black) with augmentation.

• As seen in Figure 12 (right), adding larger Binomial filters

Making Convolutional Networks Shift-Invariant Again

also increases adversarial robustness, even when training
with augmentation.

These results corroborate the findings in the main paper, and
demonstrate a use case: increased robustness to a shift-based
adversarial attack.

A.2. Alternatives to MaxBlurPool

In the paper, we follow signal processing first principles, to
arrive at our solution of MaxBlurPool, with a fixed blurring
kernel. Here, we explore possible alternatives – swapping
max and blur operations, combining max and blur in parallel
through soft-gating, and learning the blur filter.

Swapping max and blur We blur after max, immediately
before subsampling, which has solid theoretical backing
in sampling theory. What happens when the operations
are swapped? The signal before the max operator is un-
doubtedly related to the signal after. Thus, blurring before
max provides “second-hand” anti-aliasing and still increases
shift-invariance over the baseline. However, switching the
order is worse than max and blurring in the correct, proposed
order. For example, for Bin-7, accuracy (93.2→ 92.6) and
consistency (98.8→ 98.6) both decrease. We consistently
observe this across filters.

Softly gating between max-pool and average-pool Lee
et al. (2016) investigate combining MaxPool and AvgPool
in parallel, with a soft-gating mechanism, called “Mixed”
Max-AvgPool. We instead combine them in series. We con-
duct additional experiments here. On CIFAR (VGG w/ aug,
see Tab 5), MixedPool can offer improvements over Max-
Pool baseline (96.6→97.2 consistency). However, by softly
weighting AvgPool, some antialiasing capability is left on
the table. MaxBlurPool provides higher invariance (97.6).
All have similar accuracy – 93.8, 93.7, and 93.7 for baseline
MaxPool, MixedPool, and our MaxBlurPool, respectively.
We use our Rect-2 variant here for clean comparison.

Importantly, our paper proposes a methodology, not a pool-
ing layer. The same technique to modify MaxPool (reduce
stride, then BlurPool) applies to the MixedPool layer, in-
creasing its shift-invariance (97.2→97.8).

Learning the blur filter We have shown that adding anti-
aliasing filtering improves shift-equivariance. What if the
blur kernel were learned? We initialize the filters with our
fixed weights, Tri-3 and Bin-5, and allow them to be adjusted
during training (while constraining the kernel symmetrical).
The function space has more degrees of freedom and is
strictly more general. However, we find that while accuracy
holds, consistency decreases: relative to the fixed filters, we
see 98.0→ 97.5 for length-3 and 98.4→ 97.3 for length-5.
While shift-invariance can be learned, there is no explicit
incentive to do so. Analogously, a fully connected network

can learn convolution, but does not do so in practice.

B. ImageNet Classification
We show expanded results and visualizations.

Classification and shift-invariance results In Table 6,
we show expanded results. These results are plotted
in Figure 6 in the main paper. All pretrained models
are available at https://richzhang.github.io/
antialiased-cnns/.

Robustness results In the main paper, we show aggre-
gated results for robustness tests on the Imagenet-C/P
datasets (Hendrycks et al., 2019). In Tables 8 and 7 we
show expanded results, separated by each corruption and
perturbation type.

Antialiasing is motivated by shift-invariance. Indeed, using
the Bin-5 antialiasing filter reduces flip rate by 22.3% to
translations. Table 8 indicates increased stability to other
perturbation types as well. We observe higher stability to
geometric perturbations – rotation, tilting, and scaling. In
addition, antialiasing also helps stability to noise. This is
somewhat expected, as adding low-pass filtering helps can
average away spurious noise. Surprisingly, adding blurring
within the network also increases resilience to blurred im-
ages. In total, antialiasing increases stability almost across
the board – 9 of the 10 perturbations are reliably stabilized.

We also observe increased accuracy, in the face of corrup-
tions, as shown in Table 7. Again, adding low-pass filtering
helps smooth away spurious noise on the input, helping
better maintain performance. Other high-frequency pertur-
bations, such as pixelation and jpeg compression, are also
consistency improved with antialiasing. Overall, antialias-
ing increases robustness to perturbations – 13 of the 15
corruptions are reliably improved.

In total, these results indicate that adding antialiasing pro-
vides a smoother feature extractor, which is more stable and
robust to out-of-distribution perturbations.

C. Qualitative examples for Labels→Facades
In the main paper, we discussed the tension between needing
to generate high-frequency content and low-pass filtering
for shift-invariance. Here, we show an example of applying
increasingly aggressive filters. In general, generation quality
is maintained with the Rect-2 and Tri-3 filters, and then
degrades with additional filtering.

https://richzhang.github.io/antialiased-cnns/
https://richzhang.github.io/antialiased-cnns/

Making Convolutional Networks Shift-Invariant Again

AlexNet VGG16 VGG16bn

Filter Accuracy Consistency Accuracy Consistency Accuracy Consistency

Abs ∆ Abs ∆ Abs ∆ Abs ∆ Abs ∆ Abs ∆

Baseline 56.55 – 78.18 – 71.59 – 88.52 – 73.36 – 89.24 –
Rect-2 57.24 +0.69 81.33 +3.15 72.15 +0.56 89.24 +0.72 74.01 +0.65 90.72 +1.48
Tri-3 56.90 +0.35 82.15 +3.97 72.20 +0.61 89.60 +1.08 73.91 +0.55 91.10 +1.86
Bin-5 56.58 +0.03 82.51 +4.33 72.33 +0.74 90.19 +1.67 74.05 +0.69 91.35 +2.11

ResNet18 ResNet34 ResNet50

Filter Accuracy Consistency Accuracy Consistency Accuracy Consistency

Abs ∆ Abs ∆ Abs ∆ Abs ∆ Abs ∆ Abs ∆

Baseline 69.74 – 85.11 – 73.30 – 87.56 – 76.16 – 89.20 –
Rect-2 71.39 +1.65 86.90 +1.79 74.46 +1.16 89.14 +1.58 76.81 +0.65 89.96 +0.76
Tri-3 71.69 +1.95 87.51 +2.40 74.33 +1.03 89.32 +1.76 76.83 +0.67 90.91 +1.71
Bin-5 71.38 +1.64 88.25 +3.14 74.20 +0.90 89.49 +1.93 77.04 +0.88 91.31 +2.11

ResNet101 DenseNet121 MobileNetv2

Filter Accuracy Consistency Accuracy Consistency Accuracy Consistency

Abs ∆ Abs ∆ Abs ∆ Abs ∆ Abs ∆ Abs ∆

Baseline 77.37 – 89.81 – 74.43 – 88.81 – 71.88 – 86.50 –
Rect-2 77.82 +0.45 91.04 +1.23 75.04 +0.61 89.53 +0.72 72.63 +0.75 87.33 +0.83
Tri-3 78.13 +0.76 91.62 +1.81 75.14 +0.71 89.78 +0.97 72.59 +0.71 87.46 +0.96
Bin-5 77.92 +0.55 91.74 +1.93 75.03 +0.60 90.39 +1.58 72.50 +0.62 87.79 +1.29

Table 6. Imagenet Classification. We show 1000-way classification accuracy and consistency (higher is better), across 4 architectures,
with anti-aliasing filtering added. We test 3 possible filters, in addition to the off-the-shelf reference models. This shows results plotted
in Figure 6 in the main paper. Abs is the absolute performance, and ∆ is the difference to the baseline. As designed, classification
consistency is improved across all methods. Interestingly, accuracy is also improved.

ResNet50 on ImageNet-C (Hendrycks et al., 2019)
Corruption Error (CE) (lower is better)

Noise Blur Weather Digital Mean

Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel Jpeg Unnorm Norm

Baseline 68.70 71.10 74.04 61.40 73.39 61.43 63.93 67.76 62.08 54.61 32.04 61.25 55.24 55.24 46.32 60.57 76.43
Rect-2 65.81 68.27 70.49 60.01 72.14 62.19 63.96 68.00 61.83 54.95 32.09 60.25 55.56 53.89 43.62 59.54 75.16
Tri-3 63.86 66.07 69.15 58.36 71.70 60.74 61.58 66.78 60.29 54.40 31.48 58.09 55.26 53.89 43.62 58.35 73.73
Bin-5 64.31 66.39 69.88 60.31 71.37 61.60 61.25 66.82 59.82 51.84 31.51 58.12 55.29 50.81 42.84 58.14 73.41

Corruption Error, Percentage reduced from Baseline ResNet50 (higher is better)

Noise Blur Weather Digital Mean

Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel Jpeg Unnorm Norm

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rect-2 4.21 3.98 4.79 2.26 1.70 -1.24 -0.05 -0.35 0.40 -0.62 -0.16 1.63 -0.58 2.44 5.83 1.62 1.32
Tri-3 7.05 7.07 6.60 4.95 2.30 1.12 3.68 1.45 2.88 0.38 1.75 5.16 -0.04 2.44 5.83 3.51 3.34
Bin-5 6.39 6.62 5.62 1.78 2.75 -0.28 4.19 1.39 3.64 5.07 1.65 5.11 -0.09 8.02 7.51 3.96 3.70

Table 7. Generalization to Corruptions. (Top) Corruption error rate (lower is better) of Resnet50 on the Imagenet-C. With antialiasing,
the error rate decreases, often times significantly, on most corruptions. (Bottom) The percentage reduction relative to the baseline
ResNet50 (higher is better). The right two columns show mean across corruptions. “Unnorm” is the raw average. “Norm” is normalized
to errors made from AlexNet, as proposed in (Hendrycks et al., 2019).

Making Convolutional Networks Shift-Invariant Again

ResNet50 on ImageNet-P (Hendrycks et al., 2019)
Flip Rate (FR) (lower is better)

Noise Blur Weather Geometric Mean

Gauss Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale Unnorm Norm

Baseline 14.04 17.38 6.00 4.29 7.54 3.03 4.86 6.79 4.01 11.32 7.92 57.99
Rect-2 14.08 17.16 5.98 4.21 7.34 3.20 4.42 6.43 3.80 10.61 7.72 56.70
Tri-3 12.59 15.57 5.39 3.79 6.98 3.01 3.95 5.80 3.53 9.90 7.05 51.91
Bin-5 12.39 15.22 5.44 3.72 6.76 3.15 3.78 5.67 3.44 9.45 6.90 51.18

Flip Rate (FR) [Percentage reduced from Baseline] (higher is better)

Noise Blur Weather Geometric Mean

Gauss Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale Unnorm Norm

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rect-2 -0.25 1.27 0.30 1.73 2.65 -5.75 9.21 5.34 5.16 6.20 2.55 2.22
Tri-3 10.35 10.41 10.09 11.58 7.42 0.53 18.89 14.55 12.02 12.50 11.03 10.48
Bin-5 11.81 12.42 9.27 13.28 10.28 -4.10 22.27 16.59 14.11 16.50 12.91 11.75

Top-5 Distance (T5D) (lower is better)

Noise Blur Weather Geometric Mean

Gauss Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale Unnorm Norm

Baseline 3.92 4.55 1.63 1.20 1.95 1.00 1.68 2.15 1.40 3.01 2.25 78.36
Rect-2 3.94 4.54 1.63 1.19 1.91 1.06 1.56 2.07 1.34 2.89 2.21 77.40
Tri-3 3.67 4.28 1.50 1.10 1.85 1.00 1.43 1.92 1.25 2.72 2.07 72.36
Bin-5 3.65 4.22 1.53 1.09 1.78 1.04 1.39 1.89 1.25 2.66 2.05 71.86

Top-5 Distance (T5D) [Percentage reduced from Baseline] (higher is better)

Noise Blur Weather Geometric Mean

Gauss Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale Unnorm Norm

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rect-2 -0.41 0.09 -0.12 0.39 1.71 -5.83 7.19 3.74 3.90 3.93 1.51 1.22
Tri-3 6.53 5.82 7.95 8.10 5.21 -0.65 15.11 10.82 10.26 9.80 7.86 7.65
Bin-5 7.03 7.26 6.24 9.15 8.45 -4.13 17.73 12.15 10.62 11.80 8.91 8.30

Table 8. Stability to Perturbations. Flip Rate (FR) and Top-5 Distance (T5D) of ResNet50 on ImageNet-P. Though our antialiasing is
motivated by shift-invariance (“translate”), it adds additional stability across many other perturbation types.

Input Label Map
Generated Facades

Delta (Baseline) [1] Rectangle-2 [1 1] Triangle-3 [1 2 1] Binomial-4 [1 3 3 1] Binomial-5 [1 4 6 4 1]

Figure 13. Example generations. We show generations with U-Nets trained with 5 different filters. In general, generation quality is
well-maintained to Tri-3 filter, but decreases noticeably with Bin-4 and Bin-5 filters due to oversmoothing.

