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Abstract— Semantic understanding of environments is an
important problem in robotics in general and intelligent au-
tonomous systems in particular. In this paper, we propose a
semantic segmentation algorithm which effectively fuses infor-
mation from images and 3D point clouds. The proposed method
incorporates information from multiple scales in an intuitive
and effective manner. A late-fusion architecture is proposed to
maximally leverage the training data in each modality. Finally,
a pairwise Conditional Random Field (CRF) is used as a post-
processing step to enforce spatial consistency in the structured
prediction. The proposed algorithm is evaluated on the publicly
available KITTI dataset [1] [2], augmented with additional pixel
and point-wise semantic labels for building, sky, road, vegetation,
sidewalk, car, pedestrian, cyclist, sign/pole, and fence regions.
A per-pixel accuracy of 89.3% and average class accuracy of
65.4% is achieved, well above current state-of-the-art [3].

I. INTRODUCTION

We propose an algorithm for semantic parsing of the envi-
ronment using information from multiple sensing modalities,
namely images and 3D point clouds. Semantic segmentation
involves labeling every pixel in an image, or point in a
point cloud, with its corresponding semantic tag. A semantic
understanding of the environment facilitates robotics tasks
such as navigation, localization, and autonomous driving.

In unimodal semantic segmentation, most approaches for
both images and point clouds follow a bottom-up approach in
a CRF framework. Notable exceptions include methods pro-
posed by Farabet et al. [4] and Girshick et al. [5], which learn
expressive features from convolutional neural nets. CRFs are
a graphical model framework used to balance local beliefs
while enforcing spatial consistency. For images, Tighe et
al. [6] [7], Singh et al. [8], and Yang et al. [9] use an image
retrieval system followed by non-parametric classification to
produce superpixel classifications, with special considera-
tions taken for objects [7], semantic context [8], and rare
classes [9]. For point clouds, the same bottom-up pipeline
is typically taken [10] [11] [12] [13] [14], starting with an
oversegmentation, followed by regional feature extraction,
classification, and a CRF.

A challenge in the bottom-up approach is integrating and
enforcing top-down information and structure. To this end,
Ladický et al. [15] propose using Robust PN clique po-
tentials [16] to incorporate object detections. In [17], clique

1Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley.
{rich.zhang,avz}@eecs.berkeley.edu

2Department of Computer Science, University of California, Berkeley
candrastefan@berkeley.edu

3Department of Nuclear Engineering, University of California, Berke-
ley and the Nuclear Science Division, Lawrence Berkeley National Lab
kvetter@lbl.gov

potentials are extended into a multi-level hierarchy. However,
using clique potentials increases run-time, and solving for
optimal parameters remains an open problem.

In an alternative approach proposed by Munoz et al. [18]
for images and applied by Xiong et al. [19] for point
clouds, an initial classifier is first trained on the coarsest
level of a hierarchical segmentation. A classifier is then
trained on the subsequent segmentation level, with previous
classifier outputs incorporated as input features. This process
is repeated, and information can be passed downwards or
upwards multiple times through the hierarchy. The method is
extended to integrate information across multiple modalities
by Munoz et al. [20], where classifications are passed to the
subsequent level of the hierarchy in both modalities.

Several previous studies in semantic segmentation of urban
3D data using multiple sensors have been recently per-
formed [21] [22] [3]. Sengupta et al. [21] and He et al. [22]
first perform semantic segmentation in the image modality,
ignoring point cloud features. The image labeling results are
projected into 3D using point clouds extracted from stereo
vision, and results are aggregated in 3D using a voting
scheme. Cadena and Košecká [3] propose a solution using
a CRF framework, with an emphasis on fast run-time. The
method oversegments the image and extracts simple, low-
dimensional features. An early fusion architecture is used,
where separate feature sets are extracted for each segment
based on sensor coverage. A CRF framework is used to
enforce spatial consistency. The method is designed to run
quickly on a coarse label set, but struggles when applied to
finer object classes such as pedestrian and fence.

In contrast to previous work [3] [20] [17], we explicitly
incorporate information from multiple scales up front. We
first segment the image and point cloud on multiple scales.
Feature vectors of the low-level segments are augmented
by features from corresponding higher-level segments. This
differs from [3], which uses localized features computed on
a single scale only. Our approach precludes the need to train
an expanding number of classifiers [20] or rely on complex
graphical model machinery [17], but allows us to effectively
integrate information from multiple scales.

Unlike [3], which uses early fusion, we use a late fusion
architecture. Specifically, separate classifiers in each modal-
ity are first deployed. Then, for regions with overlapping
sensor coverage, a fusion classifier is trained to merge
the soft classification outputs from the separate unimodal
classifiers. Late fusion enables us to effectively leverage
the data from the entire training set, rather than just the
subset with overlapping sensor coverage. Finally, we use a
pairwise CRF as a post-processing step to enforce spatial
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Fig. 1: Top-level pipeline.

(a) (b)

(c)
Fig. 2: Example (a) image; (b) point cloud projected onto image, colored by depth; (c) point cloud, colored by height.

consistency. We test our method on the publicly available
KITTI platform [1] [2], which contains registered images
and point clouds, and demonstrate significant improvement
over the current state-of-the-art [3].

The outline of the paper is as follows. Section II provides
an overview of the proposed algorithm. Section III details
experimental results. We conclude and discuss future direc-
tions of study in Section IV.

II. ALGORITHM DESCRIPTION

A top-level pipeline of our algorithm is illustrated in Fig-
ure 1. The input to our algorithm is an individual acquisition
comprised of a single image and its corresponding 3D point
cloud, taken from the KITTI platform, as shown in Figures
2(a) and 2(c), respectively. The camera and lidar sensors are
calibrated with respect to each other; Figure 2(b) shows the
example point cloud projected onto an image. As seen in
Figure 1, our algorithm is comprised of the following steps:

• Multi-level segmentation: Segmentation is first per-
formed in each modality at two levels: a low or finer
level and a high or coarser level. Segments on the low-
level segmentation are used to perform inference.

• Feature Extraction: Each segment from the low-level is
associated to an overlapping segment from the higher-
level. Features are extracted from the low-level seg-
ments, and concatenated with the features from their
associated high-level segments.

• Classification and Fusion: Segments are first classified
using unimodal image or point cloud-only classifiers.
Segments which are within the overlapping coverage of
both sensing modalities are then reclassified by fusing
the soft outputs from the unimodal classifiers.

• Post-processing CRF: A pairwise CRF is used as a post-
processing step to enforce spatial consistency.

We describe each of the steps in more detail below.
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Fig. 3: Example image segmentation; Superpixels generated using thresholds t = (a) 0.06; (b) 0.1; (c) 0.2. Example point
cloud segmentation; (d) Fine segmentation via VCCS [24]; (e) Coarse segmentation via connected component segmentation.

A. Segmentation

To capture information at multiple scales, two levels of
segmentation are performed. Intuitively, the low-level seg-
mentation should group segments which belong to the same
class, but in a conservative manner to avoid label straddling
from undersegmentation. The high-level segmentation should
aim to capture larger object-level information.

In the image modality, we use the Multiscale Combi-
natorial Grouping (MCG) algorithm [23]. Thresholds of
0.10 and 0.20 for low and high levels, respectively, were
empirically found to work well. Examples are of low and
high level segmentations are shown in Figures 3(b) and 3(c),
respectively.

In the point cloud modality, we use the Voxel Cloud Con-
nectivity Segmentation (VCCS) algorithm [24] to produce
fine-level segments. The algorithm uses region growing to
produce uniformly sized supervoxels, while respecting object
boundaries, inferred by large changes in local normals. We
choose to produce supervoxels of dimension approximately
0.5m, smaller than the objects of interest in our application.
We generate high-level segmentations from a connected
component segmentation, similar to [25], resulting in a
ground plane segment and connected component segments.1

An example point cloud segmentation is shown in Figure 3.

1Points are binned into a 0.1×0.1m 2D grid in the x and y dimensions.
The difference in height of the points within each cell ∆z is computed.
Cells with ∆z above and below 0.1m are labeled occupied and unoccupied,
respectively. Connected components are extracted on the occupied cells.
RANSAC plane fit is run on points in unoccupied cells to obtain a ground
plane estimate. Points above the ground estimate which lie within occupied
cells of the same connected component belong to the same segment.

As seen in Figure 3(e), connected component segments can
vary in size and encompass cars, people, or entire building
façades on the order of 10m.

B. Feature Extraction

We extract features for each segment at each scale. The
features at the fine level contain bottom-up information, such
as color and texture, but do not contain as much top-down
shape information. Since we have segmented at multiple
scales, each low-level segment can be associated to single
high-level segment. The feature vector for each low-level
segment is then augmented with features extracted from the
associated high-level segment.

We compute features for each superpixel in an image,
similar to those in [6], as summarized in Table I(a). In
particular, we compute size, shape, position, color features.
In addition, we compute a high-dimension Bag-of-words
(BoW) descriptor by computing SIFT [26] and encoding
using vector quantization. To incorporate contextual infor-
mation, we dilate the bounding box of the superpixel by
10 pixels on each side and compute color and SIFT BoW
features on this region, excluding the superpixel mask. The
same features are computed on the high-level segments, with
some exclusions. Specifically, the contextual features are not
computed, since the segments are already large. The high-
dimensional descriptors are also more suited for low-level
bottom-up classification and not computed.

Table I(b) shows the features we choose to extract on the
point cloud. We compute size, shape, position, and orien-
tation features on both segmentation levels. PCA analysis
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on a segment determines eigenvalues λi, where λ1 ≥ λ2 ≥
λ3, and corresponding eigenvectors vi = (vixviyviz)T . We
define Λ =

∑3
i=1 λi. Similar to the image modality, the high-

dimensional BoW descriptor, in this case Spin Images [27],
is suited to bottom-up classification, and thus only computed
on the low-level segmentation.

TABLE I: Features extracted.
(a) Image Features.

Type Name Dim Low High

Size/Shape

Area 1 X X
Equivalent Diameter 1 X X

Major/minor axes 2 X X
Orientation 1 X X
Eccentricity 1 X X

Position (x, y) - min, mean, max 6 X X
superpixel mask (8x8) 64 X X

Color rgb+lab (mean, std) 6 X X
rgb+lab (histogram) 48 X X

High-dim SIFT BoW 400 X

Contextual
contextual rgb+lab (mean, std) 6 X
contextual rgb+lab (histogram) 48 X

contextual SIFT BoW 400 X

(b) Point Cloud Features.
Type Name Dim Low High

Size
Length proxy - λ1 1 X X

Area proxy -
√
λ1λ2 1 X X

Volume proxy - 3
√
λ1λ2λ3 1 X X

Shape
Scatter - λ3/Λ 1 X X

Planarity - (λ2 − λ3)/Λ 1 X X
Linearity - (λ1 − λ2)/Λ 1 X X

Position z − zgnd - min, mean, max 3 X X

Orientation Verticalness - v1z 1 X X

Horizontalness -
√

1− v21z 1 X X

High-dim Spin image BoW 1000 X

C. Classification

The next step of our algorithm is to classify each segment.
Classification is learning a mapping from feature vector of
length N to a label l ∈ {1, ..., L}. A soft classifier learns
a mapping from feature space RN to a probability mass
function (pmf) vector over L labels ∆L, where ∆ ∈ [0, 1].
We have found the Random Forest (RF) classifier to be
effective and use the implementation from [28].

A well-known challenge in semantic segmentation prob-
lems is class imbalance [7] [9]. In semantic segmentation
problems, stuff classes tend to dominate the majority of the
datapoints. Without addressing the class imbalance issue,
a classifier typically learns to disregard the rare classes,
resulting in zero or near-zero recall of those classes. This is
addressed in [7] and [9] by subsampling their large training
dataset at different rates based on object class occurrence,
artificially boosting the representation of rare classes during
classifier training. We take a similar approach, but address the
issue by reweighting our samples rather than subsampling,
due to a more limited training set size. Specifically, we
calculate the probability distribution over label classes in
the training set, mix it evenly with a uniform distribution,
and reweight our training examples to reflect this new mixed
distribution. This procedure is performed when training all of

our classifiers. The performance of the unimodal classifiers
is explored in Section III-C.

D. Fusion

There are two choices for fusion: early and late. In
both cases, with two sensing modalities, three classifiers are
trained: an image classifier, a point cloud classifier, and a
fusion classifier, which operates on regions with overlapping
sensor coverage. Let feature dimensions be Nimg and Npc

in the image and point cloud domain, respectively.
In early fusion, unimodal classifiers Pimg and Ppc are

evaluated on segments which are covered by a single sensor.

Pimg : RNimg → ∆L, Ppc : RNpc → ∆L (1)

In regions with overlapping coverage, a fusion classifier is
trained and evaluated on a separate feature set of length
Npc+img , comprised of information from both modalities,
e.g. the concatenation of the unimodal feature vectors.

Pearlyfusion : RNpc+img → ∆L (2)

In a late fusion architecture, classifiers are first run on all
segments in each sensing modality separately, as described
in Equation 1, regardless of whether the segment falls under
overlapping coverage. A second level of classification is then
performed on segments with overlapping coverage to fuse
the unimodal classification results. We use the concatenation
of the output pmf vectors from the image and point cloud
classifiers, and learn the following mapping.

Platefusion : ∆2L → ∆L (3)

We run the fusion algorithm on extremely fine superpixels,
as shown in Figure 3(a), to protect against label straddling.
We take the stacking approach proposed in [18] to generate
training data for the fusion classifier. The original training
data is split into k = 2 folds. Unimodal classifiers are trained
on each set of k − 1 folds and evaluated on the remaining
fold. Those results are then used to train the fusion classifier.

An advantage of early fusion is that the joint feature
space between the modalities is potentially more expressive.
However, the learning problem becomes more difficult, as the
classifier must learn a mapping from a higher-dimensional
feature space RNpc+img . Furthermore, since fusion only ap-
plies to overlapping regions, it does not enjoy the abundance
of training data available to unimodal classifiers. In the
case of KITTI data, as shown in Figure 2, the point cloud
covers approximately 60% of the field-of-view (FOV) of
the image, and the frontward facing camera only covers
approximately 25% of the FOV of the point cloud. Thus, with
a higher-dimensional feature space and less training data,
the classifier in Equation 2 is prone to overfitting. The early
fusion strategy proposed in [3] avoids this challenge by using
simple, low-dimensional features. However, expressiveness is
then inherently lost in comparison to the expressive features
in our method. In addition, though not explored in this study,
using late fusion would allow one to leverage outside image-
only or point coud-only datasets, which is more abundant
than datasets which contain both modalities.
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In the late fusion architecture, the inputs to the fusion
classifier are the outputs of the unimodal classifiers. The
unimodal classifiers are trained on the entire training set
in each modality, not merely the overlapping region, thus
enjoying an abundance of training data. The unimodal pmfs
serve as a compact and expressive mid-level feature, and
the classifier mapping in Equation 3 can be more easily
learned from less training data. The performance gain from
late fusion is explored in Section III-D.

E. Post-processing Graphical Model

At this point, superpixels have been classified individually
and likely contain some spatial discontinuities. There is
an opportunity for additional refinement by considering the
overall structure of the problem. Specifically, neighboring
superpixels with similar depth values are more likely to
have the same label. We incorporate this intuition with
a post-processing CRF, a commonly used probabilistical
framework to balance local beliefs and spatial consis-
tency [8] [9] [10] [11] [12] [13] [14]. Using a CRF typically
results in small quantitative improvement but large qualitative
improvement, and will be discussed in Section III-E.

Let V describe the set of all superpixels, and E describe
the set of all neighboring superpixels. We wish to infer the
labeling zi ∈ {1, ..., L} of each superpixel i ∈ V . Local
beliefs are described as xi ∈ ∆L, which are soft outputs from
the late fusion classifier in Equation 3. The set of all labelings
and local beliefs are denoted by z and x, respectively. The
energy function describes the affinity of all possible labelings
z, and is composed of unary potentials Ψi, which encode
the likelihood of superpixel i belonging to a given class, and
pairwise potentials Ψij , which encode the likelihood of a
pair of neighboring superpixels (i, j) ∈ E taking the same
label. Parameter λ controls the relative importance between
local beliefs and spatial consistency.2

E(z, x, λ) = −
∑
i∈V

Ψi(zi|xi)− λ
∑

(i,j)∈E

Ψij(zi, zj) (4)

The energy can be equivalently described as a probability
distribution, where Z is the normalizing constant.

P (z|x, λ) =
1

Z
exp(−E(z, x, λ)) (5)

The most likely labeling is obtained by minimizing the
energy, or equivalently, maximizing the probability.

z∗ = arg min
z
E(z, x, λ) = arg max

z
P (z|x, λ) (6)

The unary potential for superpixel i is the local belief xi,
weighted by superpixel perimeter Ci, which prevents small
superpixels from overly influencing large neighbors.

Ψi(zi = l|xi) = Cix
l
i (7)

We define the pairwise potential between superpixels (i,j)
to be associative, as neighbors are more likely to be of the
same class. The potential is weighted by the length the shared

2Parameter λ=0.563 was set using cross validation and a parameter sweep.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4: (a) Ground truth; (b) point cloud unimodal clas-
sification; (c) point cloud unimodal semantic segmentation
projected onto image; (d) image unimodal semantic seg-
mentation; (e) fused semantic segmentation; (f) our overall
system; (g) [3]; Key: building , sky , road , vegetation

, sidewalk , car , pedestrian , cyclist , sign/pole ,
fence .
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boundary, denoted by Cij , as neighbors with a large shared
boundary are more likely to belong to the same object class.
The potential is also weighted by a decreasing function of
the difference in superpixel depths, |di − dj |, as superpixels
which are further apart spatially are less likely to be from
the same class.3

Ψij(zi = l, zj = m) = δ(l,m)Cij exp(
−(di − dj)2

2σ2
d

) (8)

Because pairwise terms are submodular, Equation 6 can be
efficiently and approximately solved using the well-known
α-expansion algorithm [29].

III. RESULTS

A. Dataset

We have used the publicly available KITTI dataset [1] [2],
consisting of image and 3D point clouds. Previously pub-
lished results on semantic segmentation of the KITTI
dataset [21] [3] used a limited ground truthed dataset, com-
prised of 45 and 25 acquisitions on the training and test
sets, respectively. Furthermore, all acquisitions on the test
set were from a single sequence. We annotated a set of 252
acquisitions from 8 sequences, and split the dataset into 140
and 112 acquisitions for training and testing, respectively,
with 4 sequences in each.4 The split was chosen to balance
object class representation in the sets. The labeled object
classes were building, sky, road, vegetation, sidewalk, car,
pedestrian, cyclist, sign/pole and fence. Performance was
also evaluated over a coarser label set of building, sky,
ground, vegetation and object, as used by Cadena and
Košecká [3]. The ground class in the coarse label set consists
of the road and sidewalk classes in the fine label set. The
object class in the coarse label set is comprised of the car,
pedestrian, cyclist, sign/pole, and fence classes.

B. Comparison to state-of-the-art

Results on the coarse and fine label sets on the im-
ages are shown in Tables II and III, respectively. The 1st

rows show performance of current state-of-the-art [3].5 The
last rows show the results of our system.6 On the coarse
label set, as seen in Table II, the pixel-wise and class-
average performance of our system is 93.4% and 89.8%,
versus previous state-of-the-art [3] performance of 89.8%
and 86.1%, respectively. This represents a 35.3% reduction
in incorrectly labeled pixels. Of the stuff categories, building
and vegetation classes see significant increases, from 90.2%
and 86.3% to 95.0% and 92.8%, respectively, whereas sky
performance decreases from 95.6% to 92.6%. The most
dramatic change is the object class, which covers all thing
classes, which increases from 61.0% to 70.1%.

3σd = 5m
4Images were annotated using ground truthing tool [30]. Point clouds

were annotated using an extension of CloudCompare [31] built in-house.
5Results were obtained by separately retraining and testing on each label

set using publicly available code and verification from authors.
6Results for fine label set were obtained by training and testing on the

fine label set. Results for the coarse label set were obtained by mapping the
fine label set results onto the coarse label set.

On the fine label set, as seen in Table III, the pixel-
wise performance increase of our overall system is 89.3%,
compared to 84.1% from [3], a reduction of 32.7% of
incorrectly labeled pixels. A more dramatic increase is
seen in the class-average accuracy, from 52.4% to 65.4%.
Performance increases are seen on the stuff categories, but
more dramatic increases are shown in the rare categories. For
example, performance on the pedestrian class is more than
doubled, from 28.6% to 65.1%. Recall performance on the
difficult cyclist, sign/pole, and fence classes are dramatically
increased from 4.0%, 2.5%, and 2.3% to 7.3%, 13.8%, and
43.2%, respectively.

The confusion matrix of our overall system is shown in
Figure 5(d). High accuracy is achieved for stuff classes
building, sky, road, and vegetation, all above 92.5%. The
sidewalk class is difficult to distinguish from road, but our
algorithm is able to take advantage of cues from multiple
modalities to achieve high performance of 69.7%. The cyclist
class only achieves 7% recall, but is often confused with the
similarly looking pedestrian class 73% of the time. The fence
class performs adequately at 43%, and is often confused with
vegetation, due to its proximity in the test set, and sometimes
with building, due the similarity in shape and appearance.
The sign/pole class remains difficult, but thing classes car
and pedestrian perform well.

The 2nd, 3rd, and 4th rows of Tables II and III show
the performance of our system at various stages: after per-
superpixel image classifiers, after late-fusion, and finally,
after the post-processing CRF, and are discussed in further
detail in Sections III-C, III-D, and III-E, respectively.

C. Effect of multiple scales

Table IV shows a performance comparison of the unimodal
classifiers in the image and point cloud domains, given
information at various scales: low-level only, high-level only,
and low & high-level features together. In both domains,
using low-level information results in higher performance
than high-level only, due to increased likelihood of overseg-
mentation at the high-level. Performance increases in both
domains are observed when multiple scales are used. This is
especially evident in the point cloud domain, which shows
a 2.9% increase in pixel-wise accuracy and a dramatic 9.8%
increase in class-average accuracy. Performance for every
class except road is increased when using information from
multiple scales. In particular, the recall performance for the
cyclist class increases from 0% when using low or high-
level features only to 19.3% when using both scales. The
building, car, pedestrian, sign/pole, and fence classes also
see significant improvement.

An example segmentation using our image only classifier
is shown in Figure 4(d), where ground truth is marked
by Figure 4(a). In the example image, stuff classes such
as building, sky, vegetation, road are generally classified
correctly. However, small objects are difficult to accurately
label, as parts of the cyclist are misclassified as car, and the
pole on the left of the image is completely missed. Pieces
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(a) (b) (c) (d)

Fig. 5: Confusion matrices on overlapping sensor region; (a) Point cloud unimodal classifier; (b) Image unimodal classifier;
(c) Late-fused classifier; (d) Confusion matrix of our overall system on image region.

TABLE II: Coarse label set performance comparison against state-of-the-art; glob: pixel-wise accuracy, class: class-average
accuracy, bldg: building, sky: sky, gnd: ground, veg: vegetation, obj: object.

Performance Information Used
glob class bldg sky gnd veg obj img pc crf

Cadena and Košecká [3] 89.8% 86.1% 90.2% 95.6% 97.4% 86.3% 61.0% X X X
Ours (image only) 89.4% 86.1% 87.5% 92.5% 91.9% 92.5% 66.1% X
Ours (late fused) 92.8% 89.3% 93.5% 92.5% 98.1% 92.0% 70.4% X X

Ours (CRF) 93.4% 89.8% 95.0% 92.6% 98.5% 92.8% 70.1% X X X

TABLE III: Fine label set performance comparison against state-of-the-art; glob: pixel-wise accuracy, class: class-average
accuracy, bldg: building, sky: sky, road: road, veg: vegetation, side: sidewalk, car: car, ped: pedestrian, cyc: cyclist, sgn:
sign/pole, fnc: fence.

glob class bldg sky road veg side car ped cycl sgn fnc
Cadena and Košecká [3] 84.1% 52.4% 92.5% 95.7% 92.5% 86.3% 51.5% 67.9% 28.6% 4.0% 2.5% 2.3%

Ours (image only) 83.5% 53.3% 87.5% 92.5% 94.5% 92.5% 34.5% 71.4% 49.0% 3.6% 4.1% 3.3%
Ours (late fused) 88.0% 64.8% 93.5% 92.5% 91.2% 92.0% 69.7% 76.5% 63.7% 10.0% 16.6% 42.2%

Ours (CRF) 89.3% 65.4% 95.0% 92.6% 92.6% 92.8% 73.3% 78.7% 65.1% 7.3% 13.8% 43.2%

TABLE IV: Effect of incorporating multiple scales; glob: pixel-wise accuracy, class: class-average accuracy, bldg: building,
sky: sky, road: road, veg: vegetation, side: sidewalk, car: car, ped: pedestrian, cyc: cyclist, sgn: sign/pole, fnc: fence.

Scale Performance
Low High glob class bldg sky road veg side car ped cycl sgn fnc

img
x 83.0% 52.6% 86.6% 92.8% 94.1% 93.6% 29.6% 67.8% 49.3% 6.1% 5.1% 0.8%

x 81.1% 50.4% 88.7% 93.5% 90.1% 90.6% 20.6% 71.4% 42.0% 3.1% 3.8% 0.1%
x x 83.5% 53.3% 87.4% 92.5% 94.5% 92.5% 34.5% 71.4% 49.0% 3.6% 4.1% 3.3%

pc
x 67.1% 38.6% 72.9% - 89.4% 53.9% 26.1% 36.0% 22.4% 0.0% 30.4% 16.5%

x 59.5% 32.4% 68.0% - 97.8% 11.7% 3.8% 34.6% 35.8% 0.0% 38.3% 1.7%
x x 70.0% 49.8% 86.9% - 89.2% 55.0% 26.2% 50.0% 49.0% 19.3% 51.7% 21.1%

of the car are also misclassified, along with the sidewalk on
the bottom right.

D. Fusion results

Figure 4(b) shows the point cloud classification for the
example acquisition, and Figure 4(c) shows its projection
onto the image. As seen in Figure 4(c), the point cloud
unimodal classifier performs better at classifying the cyclist,
which is labeled as cyclist and pedestrian. The pole on the
left of the image and almost the entire car are classified
correctly as well. Significant qualitative improvement is seen
after fusion, as shown in Figure 4(e). Specifically, the cyclist
is classified as the easily confusable pedestrian class, and the
pole and car are correctly classified. Even the sidewalk on

the bottom right side is correctly identified, despite being
classified as road in the point cloud domain and building in
the image domain.

Quantitatively, our system receives a strong boost after
sensor fusion. In the fine label set, as shown in Table III,
pixel-wise performance is increased from 83.5% to 88.0%,
and class-average performance is increased from 53.3% to
64.8%, and performance increases are seen in almost every
object class. At this stage, our system outperforms the current
state-of-the-art [3] in both label sets, as shown in the 1st and
3rd rows of Tables II and III.

Figures 5(a) and 5(b) show the performance of the 3D
point cloud and image unimodal classifiers, respectively, on
the overlapping region of the two modalities. Figure 5(c)
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shows the confusion matrix on the overlapping region after
fusion. A few interesting cases where fusion greatly improves
performance are discussed below.

The sidewalk class is difficult to distinguish from road. In
the point cloud, they have near identical shape appearance,
with the only distinguishing feature being a slight elevation
difference. In the image domain, sidewalk is more accurately
classified due to color and horizontal position features, but
is still misclassified as road the majority of the time. After
fusion, however, sidewalk is classified correctly 70% of
the time, a dramatic increase from 13% and 35% in the
individual domains, as seen in Figures 5(a)(b)(c).

The fusion classifier is also able to learn modes of failure.
For example, recall on the fence class is 42% after fusion,
higher than the combined recall of 20% and 3% in individual
domains, as seen in Figure 5. The fusion classifier learns that
a segment classified as road in the image and building or
vegetation in the point cloud may in actuality be fence.

E. Post-proessing CRF

Figure 4(f) shows a final semantic segmentation after the
post-processing CRF. Compared to Figure 4(e), there is a
qualitative improvement, as the result is much more spatially
consistent. Quantitatively, as seen in the last two rows of
Tables II and III, slight improvements are made in both pixel-
wise and class-average accuracy. For example, on the fine
label set, global and class-average accuracies are increased
from 88.0% to 89.3% and 64.8% to 65.4%, respectively.

IV. CONCLUSIONS

We proposed a semantic segmentation algorithm which
fuses information from multiple modalities. The algorithm
effectively integrated information at multiple scales by per-
forming multiple levels of segmentation and augmenting
feature vectors on low-level segments with their associated
high-level segments. A late fusion architecture was used
to effectively leverage information from single modalities.
Finally, a CRF was used as a post-processing step to bal-
ance local beliefs while enforcing spatial consistency. The
algorithm was validated on image and point cloud data from
the KITTI platform, and shown to achieve state-of-the-art
results on the problem of urban semantic segmentation.

A few challenges remain. The cyclist class is often
confused for pedestrian, and sign/pole remains difficult to
identify. Integrating top-down detectors for thing classes in
both modalities would be a future direction of research.
Another future direction is integrating temporal information
from per-acquisition imagery and point cloud scans. Integrat-
ing our results with reconstruction algorithms would be an
interesting research direction as well.
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