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Abstract 
 

In this paper, we propose an algorithm to automatically 

identify window regions on exterior facing facades of 

buildings using interior 3D point cloud resulting from an 

ambulatory backpack sensor system, outfitted with 

multiple LiDAR sensors and cameras. We develop a set of 

discriminative features for the task, namely visual 

brightness, infrared opaqueness, and an occlusion 

indicator, within a Markov Random Field (MRF) 

framework to provide structured prediction for window or 

glass regions. A preprocessing classifier is trained on the 

features to produce node potentials, and large margin 

parameter training is used to boost performance. Our 

algorithm has been trained on data taken at the 3rd floor 

of Cory Hall at UC Berkeley, with a total façade area of 

269.1 m2, and has been  tested on walls taken on the 2nd 

floor of Cory Hall, a Walgreens, and an office building in 

San Francisco, with a total exterior façade area of 454.6 

m2. Window regions are successfully identified with 85.5% 

F1-score and 94.2% accuracy. 

1. Introduction 

Three-dimensional modeling of buildings is an 

important problem with many applications in architecture, 

engineering and construction (AEC) industry. To model 

and simulate building energy efficiency with tools such as 

EnergyPlus, we not only need to construct a complete 3D 

model of the building, but also to semantically identify 

windows, lights and plug loads [5]. In particular, “window 

to wall ratio” of exterior facades is an important factor in 

energy consumption of most commercial buildings. 

In this paper, we use 3D point clouds generated by an 

ambulatory human operated backpack mounted system 

made of multi-modal sensors, in order to detect windows 

on exterior facades of buildings [4][15]. A challenge in 

detecting windows from 3D colored point clouds is the 

limited amount of available training data. Furthermore, 

windows are innately shapeless and texture-less. The 

difference between “stuff” and “thing” categories in 

computer vision has been well documented [6]. “Things” 

are objects which have sizes and shapes, whereas “stuff” 

corresponds to materials with a homogenous or repetitive 

pattern, but no specific extent or shape. Windows 

correspond more to a “stuff” category than a “thing” 

category. As a result, rich high-dimensional feature 

descriptors for identifying objects such as those described 

in [3] do not apply to this task. In addition, windows do 

not have their own texture, as they are transparent. 

Similarly, in 3D space, windows do not have any unique 

features, so shape descriptors which have been developed 

for 3D point clouds [9][11] are not applicable. 

To overcome these difficulties, we take advantage of the 

multiple modalities on our data acquisition unit, and 

develop a set of features which fuse LiDAR and camera 

data to identify window regions. To begin with, since 

windows are assumed to be unobstructed during 

acquisition, we use grayscale intensity values from the 

visual imaging modality to exploit lighting differences 

between indoors and outdoors. Secondly, the laser-beams 

from the LiDAR scanners incident on wall regions tend to 

receive a return, whereas beams incident upon glass 

windows tend to penetrate the surface. As such, we can use 

the percentage of laser beam returns received from each 

region on the wall as a strong feature, which we call 

infrared (IR) opaqueness. Thirdly, our last feature serves 

as an occlusion proxy, exploiting the fact that occluded 

regions are more likely to be wall than window. 

We take a bottom-up segmentation approach with 

Markov Random Field (MRF), a commonly used graph-

based formulation for structured prediction on point 

clouds. We use a Random Forest (RF) preprocessing 

classifier to produce node potentials. Inference 

corresponds to taking the maximum a posteriori (MAP) of 

the probability distribution, which can be solved efficiently 

and exactly using graph cuts [7]. We learn the parameter 

weights using a large margin learning algorithm [23], and 

use a constant pairwise term to enforce spatial consistency.  

This paper is organized as follows. Section 2 describes 

related work in 3D point cloud classification. Section 3 

describes the MRF framework, the way node and edge 

potentials are calculated, parameter training methodology, 

and feature extraction. Section 4 includes our experimental 
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results. Finally, in Section 5, we conclude and discuss 

future work. 

2. Related Work 

A number of papers on recognition focus on designing 

high-dimensional features, such as HOG [3] for images 

and spin images for 3D point clouds [11]. However, these 

features do not describe windows well, as they are innately 

texture-less in 2D and shapeless in 3D. 

There is a large body of work in scene understanding in 

various settings. Golovinskiy et al. use a pipelined 

approach to identify small outdoors objects, such as cars, 

mailboxes, and recycling bins; objects are first segmented 

from the background, features are extracted, and classifiers 

are trained [6]. Hierarchical classifiers are explored by 

Xiong et al. to provide sequenced predictions on images 

[27], and are then extended to perform on 3D point clouds 

outdoors [28]. Munoz et al. extend the algorithm on 

outdoor point clouds and images, which are acquired using 

a push-broom LiDAR scanner and camera [17]. 

In their seminal work, Anguelov et al. use pairwise 

associative MRFs to perform segmentation and 

classification tasks [2]. Munoz et al. add directional edge 

features, add higher order cliques for faster inference [19], 

and adapt functional gradient training [18]. Shapavalov et 

al. use correlation between object classes [21] and employ 

a Radial Basis Function (RBF) kernel to allow for 

nonlinear feature separability [22]. These methods are 

applied to outdoor data acquired from an aerial scanning 

platform. Lu and Rasmussen explore adding an RF or a 

Support Vector Machine (SVM) pre-processing classifier 

to calculate node potentials, rather than injecting features 

directly into the node potentials [16]. These methods focus 

on identifying objects such as vegetation, buildings, and 

vehicles, and cannot be directly applied to detecting 

windows in indoor scenes. 

MRFs have also been used in a variety of indoor 

applications. Triebel et al. build associative MRFs to 

detect objects such as chairs, tables, and fans [24]. The 

method was also extended to the building space to provide 

semantic labels for the function of areas of buildings, such 

as lobby, corridor, and room. Previous work focused on 

identifying windows use a single modality in an outdoor 

setting, whereas we fuse data from multiple modalities in 

an indoor setting [1][14][26]. Wang, et al. [26] use LiDAR 

exclusively, and Lee and Nevatia [14] and Ali, et al. [26] 

use images to detect windows across multiple floors. The 

methods in [1] and [14] explicitly rely on the regular grid 

patterns of windows, an assumption which not only does 

not hold for many buildings, but also cannot be exploited 

from a single floor. The method in [26] uses a detector-

based approach which works for outdoor environments, 

where windows appear to be small, localized objects. 

Rusu et al. propose an algorithm which attaches 

semantic information to a point cloud for objects which are 

of interest to a robotic assistant, such as cupboards, tables, 

drawers, and shelves [20]. Top-down object detectors are 

fused with the bottom-up semantic segmentation 

framework by Lai et al. to detect objects such as bowls, 

caps, and coffee mugs on a desk using RGB-D video 

obtained from a Kinect sensor [13]. Koppula et al. also use 

MRFs in conjunction with a Kinect sensor to identify 

objects such as parts of chairs, tables, and computers [12]. 

The Kinect sensor provides denser depth information than 

the laser scanners on our backpack data acquisition unit, 

but does not have adequate sensing range to construct 3D 

models from walkthroughs. We choose to use the 

backpack acquisition platform, as it is capable of 

generating large scale, detailed, 3D models of building 

interiors rapidly. 

3. Algorithm Description 

A high level diagram showing the steps used for training 

and testing the proposed algorithm is shown in Figure 1. 

We use planar regions extracted from the 3D point cloud 

to represent the walls in space, as described in Section 3.1. 

The ground truthing procedure is described in Section 3.2. 

Section 3.3 discusses the MRF framework, along with 

inference and parameter training. Section 3.4 describes the 

features extracted from multiple sensing modalities which 

are used by our proposed algorithm. 

3.1. Wall Decomposition 

We start with a backpack, equipped with 2D laser range 

finders, IMU and cameras, which an ambulatory human 

operator carries through indoor environments, acquiring 

the raw sensor data, which is then automatically processed 

offline to generate 3D colorized point clouds [4][15]. The 

goal of the wall decomposition stage is to identify walls of 

the building, preferably facing the exterior, from the full 

3D point cloud. An example of a room with an exterior 

facing façade is shown in Figure 2, which is a student 

lounge in Cory Hall, the Electrical Engineering building at 

 Figure 1 Top-level diagram (a) training (b) testing. 

(a) 

(b) 
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UC Berkeley. Each wall k within K total walls is described 

as a collection of Pk×Qk pixels, each of which is an r×r 

centimeter 2D patch on wall k. Our goal is to automatically 

classify each “pixel” as a “window” or “wall”. Wall 

decomposition can be performed either manually or 

automatically, as described below. 

 

3.1.1 Manual Wall Decomposition 

The point cloud of the model can be cropped into 

separate walls with commercial tools such as QuickTerrain 

Modeler1, using approximately 1 minute of user time per 

wall. Parameters which describe each wall as a 2D planar 

region are then automatically extracted. RANSAC plane 

fitting is first performed, with tolerance of 0.6 meters [10]. 

The extent of the planar region is automatically determined 

by projecting the associated point cloud points onto the 

plane, with the outermost points defining the boundaries of 

the planar region. The planar region is then automatically 

divided into pixels of resolution r meters. Given a model 

with K walls, the dimensions of the kth wall are denoted as 

Hk and Wk, for k in {1,2,...,K}. For wall k, the 

representative “pixelized” wall has dimensions Pk×Qk, 

where Pk = floor[Hk/r] and Qk = floor[Wk/r], Rk=Pk×Qk total 

pixels, and ordered pair (p,q) indexes a pixel. In our 

experimental dataset, the width of these walls range 

anywhere from 3.3 to 13 meters, and an average of 6.7 

meters. 
 

3.1.2 Automatic Wall Decomposition 

Automatic 2.5D and 3D surface reconstruction 

algorithms have been developed to automatically extract 

the watertight building floor plan and vertical walls, given 

the 3D point cloud resulting from our backpack acquisition 

system [25]. Walls which lie on the outer perimeter can be 

automatically identified as follows: A single wall is first 

found by constructing a ray from the center of the model 

outwards in any direction. The outermost wall the ray 

intersects with is guaranteed to be on the outer perimeter, 

as are its adjacent walls. We trace along the adjacent walls, 

in either direction, until we return to the first wall. The 

traversed walls comprise the outer perimeter of the 

 
1 trademark by Applied Imagery LLC 

scanned area. From there, the planar region representation 

for each wall can be automatically extracted following the 

process described in Section 3.1.1. An example of 

manually and automatically extracted walls is included in 

Section 4.4. 

3.2. Ground truthing 

Ground truthing is the process of labeling each pixel 

(p,q) on each wall k as a “window” or a “wall”. This is 

performed for training and performance evaluation and not 

testing. As part of the 3D point cloud generation process, 

the pose of the backpack is recovered as a function of time 

as it traverses the environment [4]. Since the cameras are 

rigidly mounted on the backpack, the pose for the 

collected imagery is known as well. For each wall k, we 

select one or two images with the wall in the field of view. 

We then annotate windows as polygons on the image, 

which are then projected onto the planar region. Pixels 

which are inside and outside of the polygons are ground 

truthed as “window” and “wall”, respectively. 

The associated camera pose derived from backpack 

localization algorithms can be error prone and thus lead to 

large projection errors [15]. As such, we refine camera 

pose values for ground truthing by manually finding 

correspondence points between the camera images and the 

3D point cloud model, and solving a perspective-n-point 

(PNP) problem [8]. The pixelized ground truthed labeling 

of the example room in Figure 2 is shown in Figure 3(d). 

3.3. Markov Random Field 

3.3.1 General framework 

MRFs are a common method of performing structured 

inference. Given a set of features z, the probability 

distribution of possible labeling configurations x, along 

with an equivalent energy function representation, is 

computed from potential functions through Equations (1) 

and (2) as follows: 

 
 

  wz;x,
wz,

wz,x E
Z

P  exp
1

|  (1) 

     
 




Eji

jiij

Vi

ii xxxE
,

;,,;, wz,zwzwz;x, jii   (2) 

Sets V and E represent the set of all nodes and vertices, 

respectively in the graph, and ψi and ψij are node and edge 

potential functions, respectively. Each pixel on each wall 

is a node on the graph, and is indexed as i in {1,2,…, 

 

K

k kR
1

}. An edge is formed between neighboring 

pixels, in a 4-connected grid. Feature matrix z has 

dimensions F× 

K

k kR
1

, where F is the number of features 

extracted. Feature vector zi has length F, and is the feature 

extracted from the ith pixel. Labeling for our problem of 

window detection is binary,   
K
k kR11,0x , where 0 and 1 

Figure 2 3D point cloud of a room from Cory Hall. 
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represent labelings of “wall” and “window”, respectively. 

Indicator functions xi
0 and xi

1 are defined to be 1 if pixel i 

is labeled 0 or 1, respectively, and 0 otherwise. A common 

assignment of potential functions is a log-linear model. 

  1100 ,,;, inodeinodeii xwxwx iii zzwz   (3) 

An associative model is used for the energy term to 

penalize neighboring pixels with differing labels. 

   ji xxedgejiji wwxx  1;,, ji z,z  (4) 

Variables 
edgenodenode www ,, 10  comprise vector w. 

 

3.3.2 Preprocessing classifier 

We train a RF preprocessing classifier to obtain the data 

term  w;z i,ii x . The pre-classifier reduces dimensionality 

of the input features, and enables incorporation of non-

linear classification ability. Lu and Rasmussen have 

reported RF to have better performance than SVM pre-

classifiers for 3D point clouds [16]. We use the 

distribution of votes resulting from the pre-classifier, 

ΦPC(xi|zi), rather than the binary classification to compute 

the data term in the original MRF problem, as follows: 

      1100 |0|1, iiPCnodeiiPCnodeii xxwxxwx ii zzwz;   (5) 
 

3.3.3 Inference 

Inference is performed by finding the labeling 

configuration x* which maximizes the probability 

function, or equivalently, minimizes energy. This is 

referred to as the maximum a posteriori (MAP) labeling. 

    wz;x,wz,|xx* xx EP minargmaxarg   (6) 

For a binary label problem, the MAP inference can be 

reformulated as a graph cut problem and solved efficiently 

and exactly [7]. 
 

3.3.4 Parameter training 

We use the Margin Rescaled algorithm from Szummer, 

et al. [23] to train parameter vector w. The algorithm 

requires computation of the energy function (2) for any 

possible labeling x, which requires computation of the 

data term (5), which in turn requires evaluation of pre-

classifier ΦPC(xi|zi) for every pixel i in the training set. We 

use a k-folds procedure: with K walls in the training set, K 

pre-classifiers ΦPC are trained, leaving one wall out at a 

time. For each pixel i, the data term is then calculated 

using Equation (5) with pre-classifier ΦPC_k, where pixel i 

originates from wall k. The Margin Rescaled algorithm 

uses an iterative, large margin learning procedure to find 

the optimal parameter vector w. 

3.4. Feature Extraction 

We use a total of F=3 features for each pixel i to build 

feature vector zi. 
 

3.4.1 Visual brightness 

The brightness level indoors differs from the lighting 

outdoors and can be used as a discriminative feature to 

identify windows. We project points within 0.6 meters of 

the wall onto the planar representation of the wall. For 

each pixel, the median grayscale value of the projected 

points found within 2 centimetres from the pixel centre, in 

Manhattan distance, is used as the feature value. Due to the 

limited amount of training data, other colour components 

are not used. This is done to prevent the classifier from 

over-fitting on the colour of the walls within the training 

set. With additional training data, other colour features can 

be used, and the classifier can exploit the colour difference 

between indoor walls and outdoor scenes. 
 

3.4.2 Infrared opaqueness 

Laser-beams from the LiDAR sensor typically penetrate 

glass, whereas a return is frequently received from a “wall” 

region. For each wall k, the number of returned laser-

beams and  number of incident laser-beams on each pixel 

are represented by matrices Nk and Mk, respectively, both 

of which are dimensions Pk×Qk, as defined in Section 

3.1.1. Matrix Nk is obtained by projecting the points in the 

point cloud which are within 0.6 meters of the planar 

region representation, and counting the number of points 

which fall within the bounds of each pixel. Matrix Mk is 

obtained by projecting the position and direction of the 

laser scanner, at each laser scan time, onto the planar 

region, and finding the intersecting pixel (p,q). The value 

of Mk is then incremented at (p,q). 

For scenarios where the backpack operator is far from 

the wall of interest, successive laser-beams may be spaced 

far apart enough such that many intermediate pixels have 

no associated incident laser-beams. A similar effect would 

be observed for small pixel resolution r, since each laser-

beam can only be associated to a single pixel. To mitigate 

this, we convolve matrices Nk and Mk with a Gaussian 

kernel with σ=2.5 centimetres to produce matrices Nk' and 

Mk', so that feature is invariant to resolution size r. 

Examples for the wall pictured in Figure 2 is shown in 

Figure 3(a) and 3(b), respectively. The opaqueness feature 

is obtained by an element-wise division of the matrices. 

Specifically, the opaqueness value for pixel (p,q) on wall k 

is Nk'(p,q)/Mk'(p,q). The opaqueness map for the example 

room is shown in Figure 3(e). Many of the window regions 

are IR transparent, as expected. However, at times, the 

LiDAR may still receive returns from “window” pixels. 

For example, if the window is tilted open, an incident laser 

is more likely to result in a return. 
 

3.4.3 Occlusion proxy 

The final feature acts as a proxy to occlusion. Our 

proposed algorithm is designed to be able to process scans 

from indoor areas, which may be cluttered by objects such 

as desks, chairs, people, and plants. As a result, collected 
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 (a)  (b) 

 

 (c) (d) 

 (e) (f) 

Figure 3 (a) Number of incident laser-beams; (b) number of 

laser-beam returns; (c) number of incident laser-beams, filtered; 

(d) ground truth (pink – windows, black – wall); (e) IR 

opaqueness feature map; (f) occlusion proxy feature. 

features, particularly the opaqueness data, may be errant. 

For pixel (p,q) on wall k, the opaqueness feature divides 

Nk'(p,q) laser returns by Mk'(p,q) incident laser-beams. 

For uncluttered areas, a pixel may receive hundreds of 

incident beams, and as a result, the derived opaqueness 

feature is an accurate reflection of its properties. However, 

for occluded areas, Mk'(p,q) may be extremely low, in 

which case the opaqueness feature becomes overly 

sensitive to whether individual laser beams received a 

return or not, and may not be an accurate indication of the 

material properties. The classifier downstream is then 

unable to differentiate between 0 returns from many, e.g. 

100, and 0 returns from very few, e.g. 2 incident laser-

beams. In the former case, the opaqueness feature would 

correctly indicate that the pixel corresponds to a “window” 

region, whereas in the latter case, there is a strong 

possibility that the pixel is simply a “wall” region, 

occluded by some other object. 

To overcome this, we compute occlusion proxy through 

the following procedure. For a given wall k, the number of 

laser beam counts, Mk', is obtained from the opaqueness 

feature; an example of this is shown in Figure 3(a) for a 

wall of height Hk meters and Pk pixels in the vertical 

direction. In this particular example, due to the operator 

trajectory, the number of scanned points is drastically 

different on the left and right halves of the wall. As such, 

dividing the entire laser beam count matrix Mk' by a single 

number would not successfully elucidate which portions of 

the wall are occluded. Rather, a normalizing matrix Lk is 

first computed. The median value of laser beam counts is 

obtained along a tall and narrow sliding window of size 

Hk×0.25 meters, slid along the x-direction. This value is 

assigned to all Pk values in the vertical direction in matrix 

Lk, as shown in Figure 3(c). The occlusion feature for a 

pixel (p,q) on wall k, designated as Ok, is then set to 

min(1,Mk'(p,q)/(Lk(p,q)+ε)). The function highlights 

regions which have a low number of laser-beam counts. 

Variable ε is set to 10-3 to avoid divide by 0. As seen in 

Figure 3(f), regions with low values are on the bottom of 

the image, and coincide with the presence of occluders. 

4. Experimental results 

The data for training set for all classifiers has been taken 

from the 3rd floor of Cory Hall. The walls of Cory 

comprised of 1.67 M points, and were segmented from 44 

M points in the original model. The test set data has been 

taken from the 2nd floor of Cory Hall, a Walgreens, and an 

office. Statistics of the datasets, using manual 

decomposition, as described in Section 3.1.1, are shown in 

Table I. 

Table I Training and testing set statistics. 

For testing, the manual decomposition is used for 

baseline results reported in Sections 4.1 and 4.2, the 

ablation study in Section 4.3, and additional test set in 

Section 4.5. Results using automatically decomposed walls 

are discussed in Section 4.4. Resolution r is set to 4 

centimeters; as discussed in Section 3.4.2, feature 

extraction is invariant to resolution. Training on a 2.66 

GHz Intel processor took 13.8 minutes in total: 1.25 

minutes per classifier for 11 classifiers, 1 classifier for pre-

classifier training and 10 more for the leave-one-out 

process for parameter training. 

4.1. Random Forest pre-classifier 

A total of 50 trees were trained in the RF pre-classifier. 

The training subset for each tree was 80% of the total 

training set. Trees are extended until each leaf node had a 

maximum of 10 examples. Results of the RF pre-classifier 

are shown in Table II. Since we use three features for the 

 
Training Testing 

set name 3rd Floor 
2nd 

Floor 

Wal-

greens 
Office Total 

# walls 10 9 3 5 17 

Total area [m2] 269.1 316.3 80.1 58.2 454.6 

Window area [m2] 65.0 67.4 11.6 16.9 96.0 

% window 24.1% 21.32% 14.53% 29.09% 21.12% 



   

 

 

6 

classification, the output from the RF classifier can be 

directly plotted. Figure 4 displays a heat map for 

ΦPC(xi=1|zi) given different slices of the value of the 

occlusion proxy feature. Note that lower values of 

occlusion proxy indicate that the pixel is more occluded. 

In Figure 4(a), the occlusion proxy is at its maximum 

value, indicating the region on the wall is un-occluded. 

Pixels which are IR transparent and visually bright are 

classified as very likely “window”, as seen in Figure 4(b). 

As the occlusion proxy feature decreases, the classifier 

assigns lower probability to “window”, for the same 

brightness and IR opaqueness values. Figure 4(c) shows 

that heavily occluded regions need to be completely 

transparent and bright to be classified as “window”. 

4.2. Semantic segmentation results 

Performance results for the pre-classifier 

round(ΦPC(xi=1|zi)), the MRF with default weights, and the 

MRF with trained weights are shown in Table II. The first 

group of rows corresponds to the parameter vector 

weights. The second group of rows shows commonly used 

metrics for performance evaluation.2 

The second column in Table II refers to results of the 

per-pixel RF pre-classifier only. This is equivalent to 

forming a MRF, but setting the edge weights to 0. In this 

case, the energy function only depends on the node 

potentials. The third column shows results for the MRF 

given default untuned weights. Improvement is seen in the 

F1-score and accuracy, as compared to RF only, indicating 

that, as expected, contextual information from neighboring 

classifications are useful. The last column in Table II 

shows the weights from the Margin Rescaled algorithm 

described in Section 3.3.4 [23]. The node weight wnode
0 is 

larger than wnode
1, increasingly penalizing a xi=0 label 

choice and resulting in a slight bias of labeling regions 

“window”. F1-score and accuracy are slightly improved 

with the trained weights, as compared to default weights, 

indicating that parameter training has been successful. The 

results for the MRF with trained weights are broken down 

by test area in Table III. 

The wall which contains the entrance of a Walgreens, 

along with its semantic segmentation, is shown in Figure 

5(a), 5(b) and 5(c). The wall contains a window, a mirror, 

and glass doors into the store. Various posters and banners 

are taped onto the doorway, as shown in Figure 5(b). 

These are ground truthed as “wall”, since the algorithm is 

trained and designed to identify unobstructed windows. 

The pixels which correspond to the window on the left of 

 
2 TP – true positive, FN – false negative 

FP – false positive, TN – true negative 

Precision = TP / (TP + FP), Recall = TP / (TP + FN) 

F1-score = TP / (TP + .5 FP + .5 FN) 

Accuracy = (TP + TN) / (TP + FN + FP + TN) 

 

no pairwise 

terms / RF only 

untrained 

weights 

trained 

weights 

wnode
0 1 1 .635 

wnode
1 1 1 .537 

wedge 0 1 .555 

Precision 87.0% 91.3% 90.2% 

Recall 74.7% 79.3% 81.2% 

F1-score 80.4% 84.9% 85.5% 

Accuracy 92.3% 94.0% 94.2% 

Table II MRF classification results. 

Dataset 2nd floor Walgreens Office All 

TP [m2] 54.5 8.8 14.7 78.0 

FN [m2] 13.0 2.9 2.2 18.0 

FP [m2] 3.9 1.8 2.8 8.5 

TN [m2] 245.0 66.6 38.4 350.1 

Precision 93.4% 83.2% 83.8% 90.2% 

Recall 80.8% 75.4% 87.1% 81.2% 

F1-score 86.6% 79.1% 85.4% 85.5% 

Accuracy 94.7% 94.2% 91.4% 94.2% 

Table III Classification results per test data set. 

Weights Statistic br op br+op all3 

No 

pairwise 

terms / RF 

only 

Precision 64.5% 76.4% 82.4% 87.0% 

Recall 55.4% 69.0% 73.8% 74.7% 

F1-score 59.6% 72.5% 77.9% 80.4% 

Accuracy 84.1% 89.0% 91.1% 92.3% 

Trained 

weights 

Precision 67.3% 88.3% 90.6% 90.2% 

Recall 52.3% 75.8% 81.2% 81.2% 

F1-score 58.8% 81.6% 85.7% 85.5% 

Accuracy 84.6% 92.8% 94.3% 94.2% 

Table IV Test results with limited feature sets: br-brightness, 

op-opaqueness, br+op – brightness & opaqueness, 

all3 – brightness, opaqueness & occlusion proxy. 

Decomp. Method Auto (out) Inter (ext) Manual(ext) 

% window 5.08% 22.64% 21.12% 

Precision 75.5% 91.5% 90.2% 

Recall 80.4% 80.4% 81.2% 

F1-score 77.9% 85.6% 85.5% 

Accuracy 97.7% 93.9% 94.2% 

Table V Test results with different wall decomposition methods. 

 

 

Figure 5 (a)(b) Visual images of example wall; 

 (c) semantic segmentation of example wall in Walgreens. 

  (a) (b) (c) 

  (a) (b) (c) 

Figure 4 Output from the per-pixel RF pre-classifier 

(Red – ΦPC(xi=1|zi) = 1: likely to be window, 

Blue – ΦPC(xi=1|zi) = 0: likely to be non-window). 

Occlusion Proxy is (a) 1.0 (b) 0.74 (c) 0.47. 
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the wall are successfully identified. The mirror, however, 

is incorrectly identified as a window, predominantly 

because a mirror is seen as IR transparent. Incident laser 

beams often reflect off the mirror; a return is received and 

computed to be behind the mirror, at a distance twice as 

far from the laser scanner. This is a common failure case. 

4.3. Ablation Study 

To evaluate the effectiveness of each feature, an 

ablation study is performed, where the algorithm is trained 

and tested on limited feature sets, as shown in Table IV. 

The study is performed on the manually decomposed walls 

described in Section 4.2. The results in the top group of 

rows in Table IV correspond to the per-pixel RF pre-

classifier only, and the bottom corresponds to MAP 

inference with the MRF. The highest value, or any value 

within 0.2% the highest value, in each row is bolded. In 

the top group of rows, the highest F1 and accuracy scores 

are achieved when all features are used, as shown in the 

last column. Interestingly, the MRF results in system 

performance with and without the occlusion proxy to be 

roughly equivalent. Opaqueness is stronger feature than 

brightness. Both are stronger than the occlusion proxy, 

which was designed to help refine the opaqueness feature. 

4.4. Results with Automatic Wall Decomposition 

Thus far, we have shown results for manually selected 

exterior facing walls as described in Section 3.1.1. An 

example of this for the second floor of Cory Hall is shown 

in cyan in Figure 6. Alternatively, we can automatically 

generate a complete set S of all vertical walls from the 3D 

point cloud by applying the method in [25]. In Figure 6, 

set S consists of thin black lines, thick black lines, and 

blue lines.  Thick black lines are a subset of S, 

corresponding to exterior facing walls, assuming prior user 

knowledge of the building layout. These are identified with 

a simple interactive GUI tool, where the user can rapidly 

select exterior facing walls. Dark blue lines are also a 

subset of S, corresponding to the walls of the outer 

perimeter of scanned path, which are automatically 

identified with no user intervention, as described in 

Section 3.1.2. Thin black lines are a subset of S 

corresponding to interior facing walls of the scanned path. 

 A performance comparison on different decomposition 

methods is shown in Table V. As expected, the interactive 

and manual decomposition methods have similar 

performance when evaluated on the exterior facing walls, 

as shown in the last two columns of Table V. As shown in 

the second column of Table V, when testing on outer 

perimeter walls resulting from completely automatic 

decomposition, the opportunity for false alarms increases 

by 430%, precision drops from 91.5% to 75.5%, and F1-

score drops from 85.6% to 77.9%. Accuracy increases, 

because the additional walls are classified with 98.8% 

accuracy. In this case, results are achieved completely 

automatically, with no human intervention in manually 

cropping walls and no a priori information as to which 

walls face the exterior. 

 The semantic segmentation results using automatic wall 

decomposition for each pixel on the 2D walls in Figure 6 

are transformed into their original position in 3D in Figure 

8. There are several false alarms, as indicated by the red 

regions. Many of these correspond to indoor glass and can 

be removed by better detecting which walls can possibly 

correspond to the exterior of a building. In addition, since 

the false alarms almost all correspond to small regions, 

with prior knowledge of minimum window size, post-

processing can be performed to increase precision. 

4.5. Results on Dataset Acquired at Night 

The proposed algorithm uses the brightness variability 

between indoor and outdoor environment to identify 

windows. Because the training dataset was acquired during 

the day, the RF classifier learns that window regions 

correspond to where brightness level is higher, as seen in 

Figure 4. We now characterize performance of our 

proposed algorithm on an additional test set, which was 

acquired at a hotel in Houston during the night time. The 

set also has the distinction of being majority “window”, 

rather than majority “wall” as were the training and earlier 

test sets, shown in Table I and Table VI. Semantic 

segmentation results are shown in Table VI, and an 

example image from the data acquisition, along with its 

corresponding semantic segmentation, are shown in Figure 

7(a) and 7(b), respectively. There are partial occluders, 

such as the potted plants, which cause false negatives. 

However, the classifier is able to distinguish between the 

object classes with some accuracy, due to the 

discriminative ability of the opaqueness feature. As seen in 

Table VI, the brightness feature reduces performance, and 

removing it increases F1-score from 73.9% to 81.1%. 

Figure 6 Manual vs. Automatic wall decomposition on 2nd 

floor of Cory Hall. Auto – automatic decomposition, out – 

outer perimeter walls, all – all walls. 
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 (a) (b) 

Figure 7 (a) Visual image (b) Segmentation of example wall. 

 

Gathering additional training data under different 

conditions is likely to improve performance. Also, during 

test time, given prior knowledge, it is possible to use a 

different classifier, depending on whether it was bright or 

dark outside. 
% window 74.6% 

Feature set op+occl all3 

Precision 84.4% 95.5% 

Recall 78.0% 60.3% 

F1-score 81.1% 73.9% 

Accuracy 72.8% 68.3% 

Table VI Houston dataset semantic segmentation 

results, op+occl – opaqueness & occlusion proxy, 

all3 – brightness, opaqueness & occlusion proxy. 
 

 

 

5. Future Work 

Future improvements are likely to be obtained by 

incorporating additional sensing modalities, using 

additional features, and training on additional datasets 

taken under varying conditions. 
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Figure 8 Semantic segmentation of walls in 2nd floor of Cory 

Hall using automatic wall decomposition. 


