

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

PROBLEM STATEMENT

Learn a "useful" representation in the unsupervised regime

Our contributions

1) Propose split-brain autoencoders, a method for unsupervised learning which uses raw data as its own supervisory signal

- 2) Demonstrate state-of-the-art performance
- 3) Ablation studies by studying cross-channel prediction problems and loss functions

METHODS

Traditional Autoencoder

Learn by *reconstructing* raw data from itself

Disadvantage: simple identity function can be learned, relies on special constraints (e.g., bottleneck) to force abstraction

Reconstructed Data

Cross-Channel Encoder

Learn by *predicting* subset of channels from another

- E.g., predict color (*ab*) from grayscale (*L* channel) [Zhang et al. ECCV 2016]
- Straightforward; little engineering effort

Disadvantages: Only extracts features from a subset of data

Split-Brain Autoencoder

Aggregate complementary cross-channel prediction tasks

- Demonstrates general validity of cross-channel encoding
- Achieve state-of-the-art on various representation learning benchmarks
- Straightforward; little engineering effort (simply add split in network)

Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction

Richard Zhang

Phillip Isola

University of California, Berkeley

Alexei A. Efros

richzhang.github.io/splitbrainauto

